深度神经网络高效处理:教程与综述

需积分: 17 11 下载量 36 浏览量 更新于2024-07-16 收藏 6.03MB PDF 举报
"深度神经网络的高效处理:教程与综述" 深度神经网络(Deep Neural Networks, DNNs)在人工智能(AI)领域,如计算机视觉、语音识别和机器人技术中得到了广泛的应用。尽管DNNs在众多AI任务上展现出最先进的准确性,但其高昂的计算复杂性也带来了挑战。因此,为了在不牺牲应用准确度或增加硬件成本的前提下提高能效和吞吐量,实现DNNs的高效处理至关重要,这对于DNN在AI系统中的广泛应用是必不可少的。 本文旨在提供一个全面的教程和调查,深入探讨了实现DNNs高效处理的最新进展。首先,文章会概述DNN的基本结构和工作原理,包括多层神经元网络如何通过反向传播和梯度下降等算法进行训练,以及如何通过激活函数如ReLU、sigmoid和tanh等引入非线性特性。 其次,文章讨论了支持DNNs的各种硬件平台和架构。这包括传统的CPU、GPU(图形处理器)以及专门为DNN优化的TPU(张量处理单元)、FPGA(现场可编程门阵列)和ASIC(专用集成电路)。每种平台都有其独特的优点和限制,例如CPU通用性强但计算效率相对较低,而GPU和TPU则在并行计算方面表现出色,适合大规模矩阵运算。 接着,文章会关注减少DNN计算成本的关键趋势。这些趋势包括硬件设计改进,如利用量化和低精度计算来减少存储需求和计算量,以及通过模型压缩来减少网络的参数数量。此外,还有混合精度训练、稀疏矩阵运算、知识蒸馏等方法,它们能够在保持模型性能的同时,降低计算和内存负担。 同时,文章还将探讨硬件设计与DNN算法的联合优化。这涉及到设计新的神经网络架构,如卷积神经网络(CNN)、循环神经网络(RNN)和Transformer,以及针对特定硬件平台优化的网络结构,如MobileNet和 EfficientNet,这些网络在保持高精度的同时,减少了计算复杂度。 最后,文章可能还会涉及近似计算、动态调度和能效分析等主题,这些都是提高DNNs效率的重要策略。近似计算允许在一定程度上接受计算误差,以换取更高的速度或更低的能耗。动态调度则可以根据任务需求和系统状态实时调整计算资源分配,而能效分析则是评估和优化系统整体性能的关键工具。 这篇教程和综述文章将为读者提供一个全面理解DNN高效处理的框架,帮助研究人员和工程师了解当前领域的最佳实践,并为未来的研究方向提供启示。
2018-03-27 上传
Over the past decade, Deep Neural Networks (DNNs) have become very popular models for problems involving massive amounts of data. The most successful DNNs tend to be characterized by several layers of parametrized linear and nonlinear transformations, such that the model contains an immense number of parameters. Empirically, we can see that networks structured according to these ideals perform well in practice. However, at this point we do not have a full rigorous understanding of why DNNs work so well, and how exactly to construct neural networks that perform well for a specific problem. This book is meant as a first step towards forming this rigorous understanding: we develop a generic mathematical framework for representing neural networks and demonstrate how this framework can be used to represent specific neural network architectures. We hope that this framework will serve as a common mathematical language for theoretical neural network researchers—something which currently does not exist—and spur further work into the analytical properties of DNNs. We begin in Chap. 1 by providing a brief history of neural networks and exploring mathematical contributions to them. We note what we can rigorously explain about DNNs, but we will see that these results are not of a generic nature. Another topic that we investigate is current neural network representations: we see that most approaches to describing DNNs rely upon decomposing the parameters and inputs into scalars, as opposed to referencing their underlying vector spaces, which adds a level of awkwardness into their analysis. On the other hand, the framework that we will develop strictly operates over these vector spaces, affording a more natural mathematical description of DNNs once the objects that we use are well defined and understood.