理解Hadoop MapReduce:分布式计算入门
93 浏览量
更新于2024-08-30
收藏 879KB PDF 举报
“Hadoop中MapReduce框架入门,一种分布式计算模型,源于Google,适用于大规模数据处理,主要由Map(映射)和Reduce(归约)两部分组成,方便非并行编程背景的开发者使用。”
MapReduce是Google提出的一种用于处理和生成大量数据的编程模型,后来被Hadoop采纳并实现为一个核心组件。这个模型简化了在分布式环境下的编程工作,尤其适合处理超过1TB的数据集。MapReduce的核心思想来源于函数式编程,它将复杂的并行计算过程分解为两个主要阶段:Map和Reduce。
1. Map阶段:
在Map阶段,原始数据被分割成多个小块,每个块作为一个独立的Map任务进行处理。程序员定义Map函数,该函数接收键值对作为输入,并产生新的键值对作为中间结果。这些中间结果通常会被分区并排序,为接下来的Reduce阶段做准备。Map任务可以在集群的不同节点上并行执行,大大提高了处理效率。
2. Reduce阶段:
Reduce阶段的目标是对Map阶段产生的中间结果进行聚合和总结。程序员定义Reduce函数,它接收一组相同键的中间结果,将这些结果合并为单个或少量的输出值。Reduce任务也支持并行执行,进一步加速了计算过程。
3. YARN(Yet Another Resource Negotiator):
Hadoop 2引入了YARN,它是一个资源管理和调度框架,负责管理和分配集群中的计算资源。YARN取代了旧版Hadoop中的JobTracker,使得MapReduce作业的调度和资源管理更加高效和灵活,能够支持更多类型的计算框架,如Spark和Tez。
4. MapReduce与HDFS的协同工作:
Hadoop Distributed File System (HDFS) 提供了数据的分布式存储,而MapReduce负责数据的分布式处理。当MapReduce作业运行时,HDFS会分发数据到各个节点,Map任务在数据本地执行,减少网络传输,提高性能。Reduce任务则负责整合Map阶段的结果,生成最终的输出。
5. 并行编程的简化:
MapReduce模型使得不擅长并行编程的开发者也能利用分布式系统的力量。通过简单的Map和Reduce函数定义,程序员可以处理复杂的数据处理问题,而无需深入理解底层的分布式系统细节。
6. 应用场景:
MapReduce广泛应用于大数据分析,例如搜索引擎索引构建、数据挖掘、机器学习等场景,能够处理PB级别的数据。它的设计思想和实现方式对后续的分布式计算框架如Apache Spark、Flink等产生了深远影响。
MapReduce是Hadoop生态系统中的关键组件,它提供了一种有效且易于理解的方式来处理大数据问题。通过将复杂的并行计算任务分解为Map和Reduce两步,MapReduce使得开发大规模数据处理应用程序变得更加容易。虽然现代的框架如Spark提供了更快的计算速度和更灵活的编程模型,但MapReduce依然是理解和掌握大数据处理的基础。
2015-01-28 上传
2017-07-28 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
2015-07-03 上传
2016-08-31 上传
2013-02-20 上传
点击了解资源详情
weixin_38644688
- 粉丝: 9
- 资源: 932
最新资源
- SSM动力电池数据管理系统源码及数据库详解
- R语言桑基图绘制与SCI图输入文件代码分析
- Linux下Sakagari Hurricane翻译工作:cpktools的使用教程
- prettybench: 让 Go 基准测试结果更易读
- Python官方文档查询库,提升开发效率与时间节约
- 基于Django的Python就业系统毕设源码
- 高并发下的SpringBoot与Nginx+Redis会话共享解决方案
- 构建问答游戏:Node.js与Express.js实战教程
- MATLAB在旅行商问题中的应用与优化方法研究
- OMAPL138 DSP平台UPP接口编程实践
- 杰克逊维尔非营利地基工程的VMS项目介绍
- 宠物猫企业网站模板PHP源码下载
- 52简易计算器源码解析与下载指南
- 探索Node.js v6.2.1 - 事件驱动的高性能Web服务器环境
- 找回WinSCP密码的神器:winscppasswd工具介绍
- xctools:解析Xcode命令行工具输出的Ruby库