没有合适的资源?快使用搜索试试~ 我知道了~
首页工程师与科学家必备:详解4000线性偏微分方程手册
工程师与科学家必备:详解4000线性偏微分方程手册
下载需积分: 25 | PDF格式 | 29.2MB |
更新于2024-07-18
| 42 浏览量 | 32 下载量 举报
《工程师与科学家手册:线性偏微分方程》是一本专门针对科技工作者的权威参考书籍,第二版由Andrei D. Polyanin和Vladimir E. Nazaikinskii共同编撰。该手册汇集了近4000个线性偏微分方程,包括一阶、二阶、三阶乃至高阶的单个和系统的方程,涵盖了各种类型,如椭圆型、双曲型、抛物型和混合型等。书中不仅提供了详尽的解析解,还包括符号计算(如Maple、Mathematica)和数值方法(如MATLAB R)的运用,帮助读者理解和解决实际问题。
本书强调了新发现的线性方程、精确解、变换和构建解的有效公式,通过具体实例展示了书中方法的应用。它还深入探讨了边值问题和特征值问题,这些是解决许多工程和科学领域问题的关键步骤。值得注意的是,书中提及的MATLAB R是在作者许可下的使用,但The MathWorks并不对书中内容或练习的准确性提供保证,其使用并不意味着对该软件的特定教学方法或用途的支持。
《工程师与科学家手册:线性偏微分方程》的第二版由CRC Press出版,隶属于Taylor & Francis Group,地址位于佛罗里达州博卡拉顿。版权信息表明,尽管书中信息来源于权威且受人尊敬的来源,但作者和出版社仍尽力确保数据和信息的可靠性,但无法对所有内容的准确性做出完全担保。此外,该书的电子版国际标准书号(ISBN)为1-4665-8149-4,版本日期为2015年11月19日。
《工程师与科学家手册:线性偏微分方程》是一部极其丰富的资源,对于研究者、工程师以及对线性偏微分方程感兴趣的学者来说,它提供了一个全面的工具箱,涵盖了理论分析、数值模拟以及实践应用的方方面面,是现代科学技术领域不可或缺的一份指南。
xiv CONTENTS
12.15 Nondissipative Thermoelasticity Equations (the Green–Naghdi Model) . . . . . 1103
12.15.1 Vector Form of the Nondissipative Thermoelasticity Equations . . . . 1103
12.15.2 Decompositions of the Nondissipative Thermoelasticity Equations
with f = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
12.15.3 Decompositions of Thermoelasticity Equations with f 6= 0 . . . . . . . . 1105
12.16 Viscoelasticity Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
12.16.1 Vector Form of Viscoelasticity Equations . . . . . . . . . . . . . . . . . . . . . . . 1106
12.16.2 Decompositions of Viscoelasticity Equations with f = 0 . . . . . . . . . . 1106
12.16.3 Various Forms of Decompositions for Viscoelasticity Equations with
f6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
12.17 Maxwell Equations (Electromagnetic Field Equations) . . . . . . . . . . . . . . . . . . . 1108
12.17.1 Maxwell Equations in a Medium and Constitutive Relations . . . . . . 1108
12.17.2 Some Transformations and Solutions of the Maxwell Equations . . . 1109
12.18 Vector Equations of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
12.18.1 Vector Equations Containing O perators div and ∇ . . . . . . . . . . . . . . . 1110
12.18.2 Decompositions of the Homogeneous Vector Equation . . . . . . . . . . . 1111
12.18.3 Decompositions of the Nonhomogeneous Vector Equation . . . . . . . . 1112
12.18.4 Vector Equations Containing More General Operators . . . . . . . . . . . . 1113
12.19 General Systems Involving Vector and Scalar Equations: Part I . . . . . . . . . . . . 1114
12.19.1 Systems Containing Operators div and ∇ . . . . . . . . . . . . . . . . . . . . . . . 1114
12.19.2 Decompositions of Systems with Homogeneous Vector Equation . . 1115
12.19.3 Decompositions of Systems with Nonhomogeneous Vector
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
12.19.4 Equations for u and p. Reduction to One Vector Equation . . . . . . . . . 1116
12.19.5 Systems Containing More General Operators . . . . . . . . . . . . . . . . . . . 1117
12.20 General Systems Involving Vector and Scalar Equations: Part II . . . . . . . . . . . 1118
12.20.1 Class of Systems Considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
12.20.2 Asymmetric Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
12.20.3 Symmetric Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
Part II Analytical Methods 1121
13 Methods for First-Order Linear PDEs 1123
13.1 Linear PDEs with Two Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123
13.1.1 Special First-Order Linear PDEs with Two Independent Variables . . . 1123
13.1.2 General First-Order Linear PDE with Two Independent Variables . . . . 1126
13.2 First-Order Linear PDEs with Three or More Independent Variables . . . . . . . . 1129
13.2.1 Characteristic System. General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
13.2.2 Cauchy Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
14 S econd-Order Linear PDEs: Classification, Problems, Particular Solutions 1133
14.1 Classification of Second-Order Linear Partial Differential Equations . . . . . . . . 1133
14.1.1 Equations with Two Independent Variables . . . . . . . . . . . . . . . . . . . . . . . 1133
14.1.2 Equations with Many Independent Variables . . . . . . . . . . . . . . . . . . . . . . 1138
14.2 Basic Problems of Mathematical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140
14.2.1 Initial and Boundary Conditions. Cauchy Problem. Boundary Value
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140
14.2.2 First, Second, Third, and Mixed Boundary Value Problems . . . . . . . . . 1142
CONTENTS xv
14.3 Properties and Particular Solutions of Linear Equations . . . . . . . . . . . . . . . . . . . . 1144
14.3.1 Homogeneous Linear Equations. Basic Properties of Particular
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144
14.3.2 Separable Solutions. Solutions in the Form of Infinite Series . . . . . . . . 1147
14.3.3 Nonhomogeneous Linear Equations and Their Properties . . . . . . . . . . . 1150
14.3.4 General Solutions of Some Hyperbolic Equations . . . . . . . . . . . . . . . . . . 1150
15 S ep aration of Variables and Integral Transform Methods 1153
15.1 Separation of Variables (Fourier Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153
15.1.1 Description of Separation of Variables. General Stage of Solution . . . 1153
15.1.2 Problems for Parabolic Equations: Final Stage of Solution . . . . . . . . . . 1157
15.1.3 Problems for Hyperbolic Equations: Final Stage of Solution . . . . . . . . 1159
15.1.4 Solution of Boundary Value Problems for Elliptic Equations . . . . . . . . 1160
15.1.5 Solution of Boundary Value Problems for Higher-Order Equations . . . 1163
15.2 Integral Transform Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165
15.2.1 Laplace Transform and Its Application in Mathematical Physics . . . . . 1165
15.2.2 Fourier Transform and Its Application in Mathematical Physics . . . . . 1170
15.2.3 Fourier Sine and Cosine Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
15.2.4 Mellin, Hankel, and Other Integral Transforms . . . . . . . . . . . . . . . . . . . . 1177
16 Cauchy Problem. Fundamental Solutions 1181
16.1 Dirac Delta Function. Fundamental Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
16.1.1 Dirac Delta Function and Its Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
16.1.2 Fundamental Solutions. Constructing Particular Solutions . . . . . . . . . . 1182
16.2 Representation of the Solution of the Cauchy Problem via the Fundamental
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185
16.2.1 Cauchy Problem for Ordinary Differential Equations . . . . . . . . . . . . . . . 1185
16.2.2 Cauchy Problem for Parabolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 1187
16.2.3 Cauchy Problem for Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . 1190
16.2.4 Higher-O rder Linear PDEs. Generalized Cauchy P roblem . . . . . . . . . . 1193
17 Boundary Value Problems. Green’s Fu nction 1199
17.1 Boundary Value Problems for Parabolic Equations with One Space Variable.
Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
17.1.1 Representation of Solutions via the Green’s Function . . . . . . . . . . . . . . 1199
17.1.2 Problems for Equation s(x)
∂w
∂t
=
∂
∂x
p(x)
∂w
∂x
−q(x)w +Φ(x, t) . . . 1202
17.2 Boundary Value Problems for Hyperbolic Equations with One Space Variable.
Green’s Function. Goursat Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205
17.2.1 Representation of Solutions via the Green’s Function . . . . . . . . . . . . . . 1205
17.2.2 Problems for Equation s(x)
∂
2
w
∂t
2
=
∂
∂x
p(x)
∂w
∂x
−q(x)w +Φ(x, t) . . . 1207
17.2.3 Problems for Equation
∂
2
w
∂t
2
+ a(t)
∂w
∂t
=
b(t)
∂
∂x
p(x)
∂w
∂x
−q(x)w
+Φ(x, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208
17.2.4 Generalized Cauchy Problem with Initial Conditions Set along a
Curve. Riemann Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210
17.2.5 Goursat Problem (a Problem with Initial Data on Characteristics) . . . . 1212
17.3 Boundary Value Problems for Elliptic Equations with Two Space Variables . . 1214
17.3.1 Problems and the Green’s Functions for Equation
a(x)
∂
2
w
∂x
2
+
∂
2
w
∂y
2
+b(x)
∂w
∂x
+c(x)w = −Φ(x, y) . . . . . . . . . . . . . . . . . . . . 1214
17.3.2 Representation of Solutions of Boundary Value Problems via Green’s
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
xvi CONTENTS
17.4 Boundary Value Problems with Many Space Variables. Green’s Function . . . . 1218
17.4.1 Problems for Parabolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218
17.4.2 Problems for Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
17.4.3 Problems for Elliptic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
17.4.4 Comparison of the Solution Structures for Boundary Value Problems
for Equations of Various Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
17.5 Construction of the Green’s Functions. G eneral Formulas and Relations . . . . . 1223
17.5.1 Green’s Functions of Boundary Value Problems for Equations of
Various Types in Bounded Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
17.5.2 Green’s Functions Admitting Incomplete Separation of Variables . . . . 1224
17.5.3 Construction of Green’s Functions via Fundamental Solutions . . . . . . . 1227
18 Duhamel’s Principles. Some Transformations 1233
18.1 Duhamel’s Principles in Nonstationary Problems . . . . . . . . . . . . . . . . . . . . . . . . . 1233
18.1.1 Problems for Homogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . . 1233
18.1.2 Problems for Nonhomogeneous Linear Equations . . . . . . . . . . . . . . . . . . 1235
18.2 Transformations Simplifying Initial and Boundary Conditions . . . . . . . . . . . . . . 1237
18.2.1 Transformations That Lead to Homogeneous B oundary Conditions . . 1237
18.2.2 Transformations That Lead to Homogeneous Initial and Boundary
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238
19 S ystems of Linear Coupled PDEs. Decomposition Methods 1239
19.1 Asymmetric and Symmetric Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
19.1.1 Asymmetric Decomposition. Order of Decomposition . . . . . . . . . . . . . . 1239
19.1.2 Symmetric Decomposition. Invariant Transformations . . . . . . . . . . . . . 1242
19.2 First-Order Decompositions. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244
19.2.1 Systems of Linear PDEs without Mass Forces (f = 0) . . . . . . . . . . . . . . 1244
19.2.2 Systems of Linear PDEs with Mass Forces . . . . . . . . . . . . . . . . . . . . . . . . 1249
19.3 Higher-Order Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
19.3.1 Decomposition of Systems Consisting of One Vector Equation . . . . . . 1251
19.3.2 Decomposition of Systems Consisting of a Vector Equation and a
Scalar Equation (the First Approach) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252
19.3.3 Decomposition of Systems Consisting of a Vector Equation and a
Scalar Equation (the Second Approach) . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
20 S ome Asymptotic Results and Formulas 1255
20.1 Regular Perturbation Theory Formulas for the Eigenvalues . . . . . . . . . . . . . . . . . 1256
20.1.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256
20.1.2 Formulas for the Coefficients of the E xpansion . . . . . . . . . . . . . . . . . . . . 1256
20.2 Singular Perturbation T heory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257
20.2.1 Cauchy Problem for the Schr¨odinger Equation . . . . . . . . . . . . . . . . . . . . 1257
20.2.2 Stationary Phase Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261
20.2.3 Fourier Transform with a Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
21 Elements of Theory of Generalized F unctions 1265
21.1 Generalized Functions of One Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
21.1.1 Important Terminological Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
21.1.2 Test Function Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
21.1.3 Distribution Space. Dirac Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . 1266
21.1.4 Derivatives of Distributions. Some Formulas . . . . . . . . . . . . . . . . . . . . . . 1267
21.1.5 Operations on Distributions and Some Transformations . . . . . . . . . . . . 1269
CONTENTS xvii
21.1.6 Tempered Distributions and Fourier Transform . . . . . . . . . . . . . . . . . . . . 1270
21.1.7 Generalized Solutions of Linear Ordinary Differential Equations . . . . 1271
21.2 Generalized Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271
21.2.1 Some Definitions. Partial Derivatives. Direct Product. Linear
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271
21.2.2 Dirac Delta Function. Generalized Solutions of Linear PDEs . . . . . . . . 1273
Part III Symbolic and Numerical Solutions with Maple, Mathematica,
and MATLAB
R
1275
22 Linear Partial Differential Equations with Maple 1277
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277
22.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277
22.1.2 Brief Introduction to Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
22.1.3 Maple Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1280
22.2 Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282
22.2.1 Constructing Analytical Solutions in Terms of Predefined Functions . 1282
22.2.2 Constructing General Solutions via the Method of Characteristics . . . . 1289
22.2.3 Constructing General Solutions via Transformations to Canonical
Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
22.2.4 Constructing Analytical Solutions of C auchy P roblems . . . . . . . . . . . . . 1293
22.2.5 Constructing Analytical Solutions of B oundary Value Problems . . . . . 1297
22.2.6 Constructing Analytical Solutions of Initial-Boundary Value Problems 1298
22.2.7 Constructing Analytical Solutions of Systems of Linear PDEs . . . . . . . 1299
22.3 Analytical Solutions of Mathematical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 1301
22.3.1 Constructing Separable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301
22.3.2 Constructing Analytical Solutions via Integral Transform Methods . . . 1305
22.3.3 Constructing Analytical Solutions in Terms of Green’s Functions . . . . 1306
22.4 Numerical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
22.4.1 Constructing Numerical Solutions in Terms of Predefined Functions . 1310
22.4.2 Numerical Methods Embedded in Maple . . . . . . . . . . . . . . . . . . . . . . . . . 1312
22.4.3 Numerical Solutions of Initial-Boundary Value Problems . . . . . . . . . . . 1318
22.4.4 Numerical Solutions of Boundary Value Problems . . . . . . . . . . . . . . . . . 1322
22.4.5 Numerical Solutions of Cauchy Problems . . . . . . . . . . . . . . . . . . . . . . . . 1323
22.4.6 Numerical Solutions of Systems of Linear PDEs . . . . . . . . . . . . . . . . . . 1325
23 Linear Partial Differential Equations with Mathematica 1327
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
23.1.1 Some Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
23.1.2 Brief Introduction to Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
23.1.3 Mathematica Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329
23.1.4 Dynamic Computation and Visualization in Mathematica Notebook . . 1332
23.2 Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
23.2.1 Constructing Analytical Solutions in Terms of Predefined Functions . 1333
23.2.2 Constructing General Solutions via the Method of Characteristics . . . . 1335
23.2.3 Constructing General Solutions via Conversion to Canonical Forms . . 1338
23.2.4 Constructing Analytical Solutions of C auchy P roblems . . . . . . . . . . . . . 1340
23.2.5 Constructing Analytical Solutions of B oundary Value Problems . . . . . 1342
23.2.6 Constructing Analytical Solutions of Initial-Boundary Value Problems 1344
23.2.7 Constructing Analytical Solutions of Systems of Linear PDEs . . . . . . . 1345
xviii CONTENTS
23.3 Analytical Solutions of Mathematical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 1347
23.3.1 Constructing Separable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347
23.3.2 Constructing Analytical Solutions via Integral Transform Methods . . . 1350
23.3.3 Constructing Analytical Solutions in Terms of Green’s Functions . . . . 1352
23.4 Numerical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356
23.4.1 Constructing Numerical Solutions in Terms of Predefined Functions . 1356
23.4.2 Numerical Methods Embedded in Mathematica . . . . . . . . . . . . . . . . . . . 1358
23.4.3 Numerical Solutions of Initial-Boundary Value Problems . . . . . . . . . . . 1359
23.4.4 Numerical Solutions of Boundary Value Problems . . . . . . . . . . . . . . . . . 1363
23.4.5 Numerical Solutions of Cauchy Problems . . . . . . . . . . . . . . . . . . . . . . . . 1364
23.4.6 Numerical Solutions of Systems of Linear PDEs . . . . . . . . . . . . . . . . . . 1365
24 Linear Partial Differential Equations with MATLA B
R
1367
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
24.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
24.1.2 Brief Introduction to MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1368
24.1.3 MATLAB Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1371
24.2 Numerical Solutions of Linear PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1374
24.2.1 Constructing Numerical Solutions via Predefined Functions . . . . . . . . . 1375
24.2.2 Numerical Methods Embedded in MATLAB . . . . . . . . . . . . . . . . . . . . . . 1383
24.2.3 Numerical Solutions of Cauchy Problems . . . . . . . . . . . . . . . . . . . . . . . . 1383
24.2.4 Numerical Solutions of Initial-Boundary Value Problems . . . . . . . . . . . 1385
24.2.5 Numerical Solutions of Boundary Value Problems . . . . . . . . . . . . . . . . . 1388
24.3 Constructing Finite Difference Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 1392
24.3.1 Explicit Finite Difference Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392
24.3.2 Implicit Finite Difference Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
24.4 Numerical Solutions of Systems of Linear PDEs . . . . . . . . . . . . . . . . . . . . . . . . . 1396
24.4.1 Linear Systems of 1D PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396
24.4.2 Linear Systems of 2D PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399
Part IV Tables and Supplements 1403
25 Elementary Functions and Their Properties 1405
25.1 Power, Exponential, and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
25.1.1 Properties of the Power Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
25.1.2 Properties of the Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
25.1.3 Properties of the Logarithmic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406
25.2 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407
25.2.1 Simplest Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407
25.2.2 Reduction Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408
25.2.3 Relations between Trigonometric Functions of Single Argument . . . . . 1408
25.2.4 Addition and Subtraction of Trigonometric Functions . . . . . . . . . . . . . . 1408
25.2.5 Products of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409
25.2.6 Powers of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409
25.2.7 Addition Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409
25.2.8 Trigonometric Functions of Multiple Arguments . . . . . . . . . . . . . . . . . . 1410
25.2.9 Trigonometric Functions of Half Argument . . . . . . . . . . . . . . . . . . . . . . . 1410
25.2.10 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1410
25.2.11 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1410
25.2.12 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1411
剩余1622页未读,继续阅读
相关推荐
wang1062807258
- 粉丝: 13
- 资源: 272
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功