机器学习实战:Peter Harrington版PDF

5星 · 超过95%的资源 需积分: 9 36 下载量 146 浏览量 更新于2024-07-25 2 收藏 10.32MB PDF 举报
"Machine Learning in Action(2012.3)] Peter Harrington. 文字版.pdf" 《Machine Learning in Action》是由Peter Harrington撰写的一本关于机器学习的实战指南,出版于2012年,由Manning出版社发行。这本书旨在帮助读者通过实践来理解和掌握机器学习的核心概念和技术。书中的内容涵盖了从基础理论到实际应用的广泛领域,适合对机器学习感兴趣的初学者和有一定经验的从业者。 书中可能包括以下关键知识点: 1. **机器学习简介**:介绍机器学习的基本概念,如监督学习、无监督学习、半监督学习和强化学习,以及它们在不同场景下的应用。 2. **数据预处理**:讲解如何清洗、转换和规范化数据,这是机器学习模型构建前的重要步骤,包括缺失值处理、异常值检测、特征缩放等。 3. **算法实现**:涵盖各种经典的机器学习算法,如线性回归、逻辑回归、决策树、随机森林、支持向量机(SVM)、朴素贝叶斯、K近邻(KNN)、聚类算法(如K-means)等,并提供Python代码实现。 4. **模型评估与选择**:讨论如何度量模型的性能,如准确率、召回率、F1分数、AUC-ROC曲线等,以及交叉验证、网格搜索等参数调优技术。 5. **深度学习入门**:虽然2012年的书籍可能不会深入探讨深度学习,但可能会简要介绍神经网络和反向传播的基础知识,为读者进一步探索深度学习奠定基础。 6. **实战项目**:通过实际案例,如文本分类、推荐系统、图像识别等,演示如何将所学应用于解决真实世界的问题。 7. **编程语言支持**:本书很可能使用Python作为主要的编程语言,因为Python是当时和现在都非常流行的机器学习语言,拥有丰富的库如scikit-learn、numpy、pandas等。 8. **数学基础**:解释必要的数学概念,如概率论、统计学、矩阵运算和优化理论,以便读者理解算法背后的原理。 9. **软件工具和库**:介绍如何使用Python的科学计算库(如NumPy、SciPy)、数据处理库(如Pandas)、以及机器学习库(如scikit-learn)。 10. **持续学习和资源**:可能包含一些关于进一步学习机器学习的资源和最新研究的推荐,帮助读者保持对这个快速发展的领域的了解。 《Machine Learning in Action》是一本实践导向的机器学习教程,它将理论与实践紧密结合,旨在帮助读者从零开始掌握机器学习,并具备独立解决实际问题的能力。
2018-07-30 上传
Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the Book A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interesting or useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many. Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification. Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful. What's InsideA no-nonsense introduction Examples showing common ML tasks Everyday data analysis Implementing classic algorithms like Apriori and Adaboos =================================== Table of ContentsPART 1 CLASSIFICATION Machine learning basics Classifying with k-Nearest Neighbors Splitting datasets one feature at a time: decision trees Classifying with probability theory: naïve Bayes Logistic regression Support vector machines Improving classification with the AdaBoost meta algorithm PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION Predicting numeric values: regression Tree-based regression PART 3 UNSUPERVISED LEARNING Grouping unlabeled items using k-means clustering Association analysis with the Apriori algorithm Efficiently finding frequent itemsets with FP-growth PART 4 ADDITIONAL TOOLS Using principal component analysis to simplify data Simplifying data with the singular value decomposition Big data and MapReduce