机器学习实战:Peter Harrington版PDF
5星 · 超过95%的资源 需积分: 9 146 浏览量
更新于2024-07-25
2
收藏 10.32MB PDF 举报
"Machine Learning in Action(2012.3)] Peter Harrington. 文字版.pdf"
《Machine Learning in Action》是由Peter Harrington撰写的一本关于机器学习的实战指南,出版于2012年,由Manning出版社发行。这本书旨在帮助读者通过实践来理解和掌握机器学习的核心概念和技术。书中的内容涵盖了从基础理论到实际应用的广泛领域,适合对机器学习感兴趣的初学者和有一定经验的从业者。
书中可能包括以下关键知识点:
1. **机器学习简介**:介绍机器学习的基本概念,如监督学习、无监督学习、半监督学习和强化学习,以及它们在不同场景下的应用。
2. **数据预处理**:讲解如何清洗、转换和规范化数据,这是机器学习模型构建前的重要步骤,包括缺失值处理、异常值检测、特征缩放等。
3. **算法实现**:涵盖各种经典的机器学习算法,如线性回归、逻辑回归、决策树、随机森林、支持向量机(SVM)、朴素贝叶斯、K近邻(KNN)、聚类算法(如K-means)等,并提供Python代码实现。
4. **模型评估与选择**:讨论如何度量模型的性能,如准确率、召回率、F1分数、AUC-ROC曲线等,以及交叉验证、网格搜索等参数调优技术。
5. **深度学习入门**:虽然2012年的书籍可能不会深入探讨深度学习,但可能会简要介绍神经网络和反向传播的基础知识,为读者进一步探索深度学习奠定基础。
6. **实战项目**:通过实际案例,如文本分类、推荐系统、图像识别等,演示如何将所学应用于解决真实世界的问题。
7. **编程语言支持**:本书很可能使用Python作为主要的编程语言,因为Python是当时和现在都非常流行的机器学习语言,拥有丰富的库如scikit-learn、numpy、pandas等。
8. **数学基础**:解释必要的数学概念,如概率论、统计学、矩阵运算和优化理论,以便读者理解算法背后的原理。
9. **软件工具和库**:介绍如何使用Python的科学计算库(如NumPy、SciPy)、数据处理库(如Pandas)、以及机器学习库(如scikit-learn)。
10. **持续学习和资源**:可能包含一些关于进一步学习机器学习的资源和最新研究的推荐,帮助读者保持对这个快速发展的领域的了解。
《Machine Learning in Action》是一本实践导向的机器学习教程,它将理论与实践紧密结合,旨在帮助读者从零开始掌握机器学习,并具备独立解决实际问题的能力。
2018-07-30 上传
2018-05-05 上传
2023-08-21 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
2019-05-20 上传
kinsley_zw
- 粉丝: 104
- 资源: 3
最新资源
- 全国江河水系图层shp文件包下载
- 点云二值化测试数据集的详细解读
- JDiskCat:跨平台开源磁盘目录工具
- 加密FS模块:实现动态文件加密的Node.js包
- 宠物小精灵记忆配对游戏:强化你的命名记忆
- React入门教程:创建React应用与脚本使用指南
- Linux和Unix文件标记解决方案:贝岭的matlab代码
- Unity射击游戏UI套件:支持C#与多种屏幕布局
- MapboxGL Draw自定义模式:高效切割多边形方法
- C语言课程设计:计算机程序编辑语言的应用与优势
- 吴恩达课程手写实现Python优化器和网络模型
- PFT_2019项目:ft_printf测试器的新版测试规范
- MySQL数据库备份Shell脚本使用指南
- Ohbug扩展实现屏幕录像功能
- Ember CLI 插件:ember-cli-i18n-lazy-lookup 实现高效国际化
- Wireshark网络调试工具:中文支持的网口发包与分析