C++实现遗传算法(GA)进行优化
需积分: 10 94 浏览量
更新于2024-09-22
1
收藏 16KB TXT 举报
" GA优化方法源程序——遗传算法,提供了C++实现的简单遗传算法(SGA)代码,用于函数优化。此代码基于David E. Goldberg的Pascal SGA代码,适用于教学和学习用途。"
遗传算法(GA)是一种启发式搜索算法,灵感来源于自然选择和遗传学的基本原理。它在解决复杂优化问题时表现出色,尤其适用于全局优化和多模态函数优化。在给定的代码中,GA被用来找到某个函数的最佳解。
代码结构:
1. `struct individual`:代表一个个体,包含其基因(chrom)、适应度(fitness)、变量值(varible)、位置(xsite)、父代索引(parent)以及一个用于杂交操作的辅助数组(utility)。
2. `struct bestever`:存储迄今为止找到的最佳个体的信息,包括其基因、适应度、变量值和所在代数。
3. `oldpop` 和 `newpop`:分别表示当前代和下一代的个体数组,实现种群的更新。
4. `bestfit`:存储最佳个体的信息。
5. `sumfitness`, `max`, `avg`, `min`:用于计算种群的适应度总和、最大值、平均值和最小值。
6. `pcross` 和 `pmutation`:交叉概率和突变概率,是GA中的关键参数。
7. `popsize`:种群大小。
8. `lchrom`, `chromsize`:个体基因的长度和种群中每个个体基因的位数。
9. `gen`, `maxgen`, `run`, `maxruns`:当前代数、最大代数、当前运行次数和最大运行次数,用于控制算法的迭代过程。
10. `printstrings`:控制是否打印个体的基因字符串。
11. `nmutation`, `ncross`:记录每次迭代的突变和交叉次数。
算法流程:
1. 初始化:创建随机初始种群,计算适应度。
2. 选择:根据适应度选择个体进行繁殖,可以采用轮盘赌选择、锦标赛选择等策略。
3. 交叉(Crossover):随机选取两个个体,按照交叉概率进行基因交换,生成新的后代。
4. 突变(Mutation):对新种群中的个体,按照突变概率随机改变部分基因。
5. 计算新种群的适应度。
6. 如果达到最大代数或满足停止条件,则结束;否则返回步骤2。
在代码中,可以看到如`oldran`这样的全局变量,可能用于生成随机数,这是GA中不可或缺的部分,用于确定个体的选择、交叉和突变。
通过不断迭代,GA试图找到一个具有最高适应度的个体,这个个体对应的解决方案即为目标函数的最优解。在实际应用中,GA的参数(如种群大小、交叉和突变概率)需要根据具体问题进行调整以获得最佳性能。此外,适应度函数的设计也至关重要,它需要能够准确地反映解决方案的质量。
2023-10-10 上传
2022-11-14 上传
154 浏览量
2022-09-21 上传
2022-09-14 上传
dengdai85
- 粉丝: 1
- 资源: 2
最新资源
- JavaScript实现的高效pomodoro时钟教程
- CMake 3.25.3版本发布:程序员必备构建工具
- 直流无刷电机控制技术项目源码集合
- Ak Kamal电子安全客户端加载器-CRX插件介绍
- 揭露流氓软件:月息背后的秘密
- 京东自动抢购茅台脚本指南:如何设置eid与fp参数
- 动态格式化Matlab轴刻度标签 - ticklabelformat实用教程
- DSTUHack2021后端接口与Go语言实现解析
- CMake 3.25.2版本Linux软件包发布
- Node.js网络数据抓取技术深入解析
- QRSorteios-crx扩展:优化税务文件扫描流程
- 掌握JavaScript中的算法技巧
- Rails+React打造MF员工租房解决方案
- Utsanjan:自学成才的UI/UX设计师与技术博客作者
- CMake 3.25.2版本发布,支持Windows x86_64架构
- AR_RENTAL平台:HTML技术在增强现实领域的应用