Pinterest自建时间序列数据库Goku:性能优化与挑战解决
142 浏览量
更新于2024-08-28
收藏 805KB PDF 举报
Pinterest作为全球知名的图片分享网站,随着业务的飞速发展,其服务器数量和数据量剧增,这给原本用于监控指标数据的OpenTSDB带来了性能瓶颈,主要表现为垃圾收集(GC)问题严重和HBase的频繁崩溃。这些问题直接影响了系统的稳定性和运营效率。
为解决这一问题,Pinterest开发了一套自主研发的时间序列数据库系统——Goku。Goku的设计初衷是为了克服OpenTSDB在大数据场景下的局限性,特别是针对时间序列数据的高效处理。Goku的关键特性包括:
1. **时间序列数据模型**:
- Goku沿用了OpenTSDB的模型,每个时间序列由一个唯一的标识符(key)和一系列按时间顺序排列的数据点组成。key通常包含度量名称和一组标记键值对,如"tc.proc.stat.cpu.total.infra-goku-a-prod{host=infra-goku-a-prod-001, cell_id=aws-us-east-1}"。
- 数据点由时间戳和数值组成,例如(1525724520, 174706.61)和(1525724580, 173456.08)。
2. **查询优化**:
- Goku支持高级查询操作,如度量名称过滤、标记值过滤、聚合函数(如Sum、Max/Min、Avg等)、降采样和速率计算。这些特性使得查询更加灵活和精确,减少了不必要的数据扫描。
3. **性能提升**:
- Goku通过引入倒排索引引擎,替代了OpenTSDB的低效扫描方式,显著提高了数据检索速度,减少了查询时的延迟和资源消耗。
- 在处理数据大小方面,Goku优化了存储结构,降低了单个数据点的占用空间,有效管理了随着业务增长而积累的数据。
4. **挑战与解决方案**:
- Goku解决了OpenTSDB面临的挑战,如避免了由于数据量大而导致的扫描性能下降和内存管理问题,从而提升了整体系统的稳定性和效率。
Pinterest通过Goku实现了对时间序列数据的高效管理和分析,这不仅满足了公司快速发展的需求,也为其他面临类似挑战的组织提供了参考。Goku的出现标志着Pinterest在基础设施层面的进一步优化,为数据驱动决策提供了强大支持。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-02-28 上传
2019-07-19 上传
2019-07-30 上传
2023-07-18 上传
2023-07-30 上传
2021-11-30 上传
weixin_38701683
- 粉丝: 4
- 资源: 926
最新资源
- MATLAB新功能:Multi-frame ViewRGB制作彩色图阴影
- XKCD Substitutions 3-crx插件:创新的网页文字替换工具
- Python实现8位等离子效果开源项目plasma.py解读
- 维护商店移动应用:基于PhoneGap的移动API应用
- Laravel-Admin的Redis Manager扩展使用教程
- Jekyll代理主题使用指南及文件结构解析
- cPanel中PHP多版本插件的安装与配置指南
- 深入探讨React和Typescript在Alias kopio游戏中的应用
- node.js OSC服务器实现:Gibber消息转换技术解析
- 体验最新升级版的mdbootstrap pro 6.1.0组件库
- 超市盘点过机系统实现与delphi应用
- Boogle: 探索 Python 编程的 Boggle 仿制品
- C++实现的Physics2D简易2D物理模拟
- 傅里叶级数在分数阶微分积分计算中的应用与实现
- Windows Phone与PhoneGap应用隔离存储文件访问方法
- iso8601-interval-recurrence:掌握ISO8601日期范围与重复间隔检查