数字滤波器的结构与实现:从差分方程到流图设计
需积分: 11 31 浏览量
更新于2024-08-16
收藏 3.3MB PPT 举报
本文主要探讨了重写差分方程在数字滤波器基本结构中的应用。数字滤波器是一种关键的信号处理工具,用于对输入序列(n)进行特定的运算,以获得输出序列(y)。设计滤波器的过程涉及明确设计指标,如所需的计算效率、存储需求、系数量化影响以及误差处理等。
文章首先介绍了滤波器设计的基本步骤,包括确定系统功能(如实现零点和极点)、软件实现(利用通用计算机或编程)以及硬件实现(如数字信号处理器,DSP)。在滤波器实现中,差分方程是核心工具,它描述了系统函数H(z)与输入x(k)和滤波器系数的关系。系统函数的不同表示形式,如系统函数H(z),反映了网络结构的不同,这直接影响运算误差、速度以及软硬件设计的复杂性和成本。
文中重点阐述了两种网络结构的表示方式:流图(或框图法),这是一种直观的表示方法,通过图形展示加法、单位延迟和乘常数三种基本运算。流图展示了信号的流动路径,比如输入x(n)经过加权、延迟后得到输出y(n)。例如,流图中可能有如下的结构:
1. 直接型滤波器的实现:
- 实现零点:通过选择适当的系数来调整滤波器特性,确保在特定频率下输出为零。
- 实现极点:通过反馈网络来设置滤波器的频率响应特性,如低通、高通、带通或带阻滤波。
2. 差分方程表示:
- Nth阶线性移不变系统可以用以下差分方程描述:
```
Y(z) = b0 * X(z) + b1 * X(z-1) + ... + bN * X(z-N) / (a0 * X(z) + a1 * X(z-1) + ... + aM * X(z-M))
```
其中,X(z)是输入序列的Z变换,Y(z)是输出序列的Z变换,而a和b是滤波器的系数。
此外,文中还强调了计算效率和存储量的重要性,不同的算法会因计算结构的差异而在这些方面有所优化。例如,通过调整离散傅立叶变换(DFT)的计算方法,可以提高计算效率和减少存储需求。
最后,系统性能的分析包括运算误差的评估,如舍入误差、截断误差和溢出,以及与硬件资源的匹配,如硬件复杂度和成本。网络结构的选择和优化对于实现高效、精确和经济的滤波器至关重要。
本文深入剖析了数字滤波器设计中的关键要素,从理论到实践,涵盖了滤波器的结构、实现方法、性能分析等多个层面,旨在帮助读者理解和设计高效的数字滤波器系统。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-05-26 上传
2021-10-17 上传
110 浏览量
1915 浏览量
2021-05-29 上传
2021-06-01 上传
杜浩明
- 粉丝: 15
- 资源: 2万+
最新资源
- 人工智能导论-拼音输入法.zip
- 协同测距matlab程序和数据.rar
- CPP.rar_人物传记/成功经验_Visual_C++_
- sslpod
- matlab拟合差值代码-PSCFit:Matlab代码,包括GUI,用于分析相和强直突触后电流(PSC)
- postman-twitter-ads-api:Twitter Ads API的Postman集合
- Cactu-Love_my-first-project
- 中英文手机网站源代码
- PscdPack:SEGA Genesis Classics ROM包装机
- 人工智能大作业-无人机图像目标检测.zip
- Advanced Image Upload and Manager Script-开源
- 00.rar_棋牌游戏_Visual_C++_
- INJECT digital creativity for journalists-crx插件
- bert_models
- HTP_SeleniumSmokeTest
- Remote Torrent Adder-crx插件