OpenCV形态学处理详解:腐蚀、膨胀、开闭运算与边缘检测
需积分: 0 156 浏览量
更新于2024-08-05
1
收藏 4.16MB PDF 举报
"OpenCV计算机视觉学习(5)——形态学处理(腐蚀膨胀,开闭运算,礼帽⿊帽,边缘检测) - 战争热诚 - 博客园1"
在计算机视觉领域,OpenCV是一个非常重要的库,它提供了丰富的功能来处理图像,包括形态学处理。形态学处理是图像分析和处理中的一个关键工具,主要用于去除噪声、连接分离的物体、填充物体内部的孔洞等。本文将深入讲解几种基本的形态学操作:腐蚀、膨胀、开闭运算以及礼帽和黑帽变换,同时也会涉及到边缘检测。
1. 腐蚀(Erosion):
腐蚀操作是通过一个结构元素(通常是小的矩形、十字或椭圆)在图像上滑动,并计算结构元素与图像像素的“AND”操作。如果结构元素中心位置的像素值为0(非白色),且结构元素覆盖的所有像素都不为1(非黑色),则该位置的原始像素被置为0。腐蚀可以用来去除小的噪声点和分离紧密相连的物体。
2. 膨胀(Dilation):
与腐蚀相反,膨胀是结构元素与图像进行“OR”操作。如果结构元素中心位置的像素值为1,且结构元素覆盖的任何像素为1,则该位置的原始像素被置为1。膨胀可以用来增加物体的大小,填充物体内部的空洞,或者将分离的物体连接起来。
3. 开运算(Opening):
开运算先进行腐蚀再进行膨胀,可以去除小的噪声点,同时保持大的物体形状。对于图像中的小噪声斑点,腐蚀会将其移除,而后续的膨胀操作不会对大物体产生影响。
4. 闭运算(Closing):
闭运算先进行膨胀再进行腐蚀,用于填补物体内部的孔洞和连接分离的小物体。膨胀会将物体扩大,然后腐蚀会移除那些没有被物体内部支持的小区域。
5. 礼帽变换(Top-hat):
礼帽变换是原图像与开运算结果的差,它显示了图像中小于结构元素的局部特征,如小的突起和凹陷。
6. 黑帽变换(Black-hat):
黑帽变换是闭运算与原图像的差,它揭示了图像中大于结构元素且不被物体覆盖的区域,比如深陷的边缘和孔洞。
7. 边缘检测(Edge Detection):
虽然边缘检测不是形态学操作,但它是计算机视觉中的重要步骤。OpenCV提供多种边缘检测算法,如Canny边缘检测、Sobel算子、Laplacian等,它们能够检测出图像中物体轮廓的边界,从而提取出物体的关键信息。
形态学处理在实际应用中非常广泛,如医学图像分析、车牌识别、文本检测等领域。理解并掌握这些基本操作是进行复杂图像处理和分析的基础。通过OpenCV库,开发者可以方便地实现这些操作,提升图像处理的效果和效率。
2020-02-29 上传
2022-08-03 上传
2022-08-03 上传
2021-01-06 上传
2017-09-19 上传
2022-08-03 上传
2023-06-20 上传
179 浏览量
yiyi分析亲密关系
- 粉丝: 32
- 资源: 321
最新资源
- JavaScript实现的高效pomodoro时钟教程
- CMake 3.25.3版本发布:程序员必备构建工具
- 直流无刷电机控制技术项目源码集合
- Ak Kamal电子安全客户端加载器-CRX插件介绍
- 揭露流氓软件:月息背后的秘密
- 京东自动抢购茅台脚本指南:如何设置eid与fp参数
- 动态格式化Matlab轴刻度标签 - ticklabelformat实用教程
- DSTUHack2021后端接口与Go语言实现解析
- CMake 3.25.2版本Linux软件包发布
- Node.js网络数据抓取技术深入解析
- QRSorteios-crx扩展:优化税务文件扫描流程
- 掌握JavaScript中的算法技巧
- Rails+React打造MF员工租房解决方案
- Utsanjan:自学成才的UI/UX设计师与技术博客作者
- CMake 3.25.2版本发布,支持Windows x86_64架构
- AR_RENTAL平台:HTML技术在增强现实领域的应用