椭圆积分与斯托拉斯基均值比的单调性研究

1 下载量 155 浏览量 更新于2024-08-27 收藏 1.25MB PDF 举报
本文探讨了完整的椭圆积分与斯托拉斯基平均的比值单调性。作者Yang等人在《不等式应用》杂志(2016)上发表的研究论文中,主要关注函数 \( r \mapsto \frac{E(r)}{S_{p}^{9/2-p}} \),其中 \( p \) 是实数,\( E(r) \) 是第二类完整椭圆积分,定义为 \( E(r) = \int_{0}^{\pi/2} \sqrt{1-r^2\sin^2(t)} dt \),而 \( S_{p,q}(a,b) = \left[\frac{q(a^p-b^p)}{p(a^q-b^q)}\right]^{1/(p-q)} \) 是斯托拉斯基平均,它是一个广义的算术-几何平均数。研究发现,当 \( p \leq \frac{7}{4} \) 时,该函数在区间 (0,1) 上严格递增;而当 \( p \in [2, \frac{9}{4}] \) 时,它在相同区间内严格递减。 研究者通过分析椭圆积分的特性及其与斯托拉斯基平均的关系,展示了这个特定函数形式下的单调性规律。这对于理解这些数学对象之间的相互作用以及它们在不等式估计、优化问题或进一步的理论研究中的潜在应用具有重要意义。具体的应用包括对完整椭圆积分 \( E(r) \) 的新界限的推导,以及Toader均值 \( T(a,b) = \frac{2}{\pi} \int_{0}^{\pi/2} \sqrt{a^2\cos^2(t)+b^2\sin^2(t)} dt \) 和Toader-Qi均值 \( T_Q(a,b) = \frac{2}{\pi} \int_{0}^{\pi/2} a\cos^2(\theta) b\sin^2(\theta) d\theta \) 的界限。论文的分类号为33E05(特殊函数),26D15(数值分析中的逼近论)和26E60(多元微积分的数值方法),关键词包括完整椭圆积分、斯托拉斯基平均、Toader均值和Toader-Qi均值。 这一研究不仅提升了我们对这些经典数学对象的理解,而且可能启发新的数学理论和实际问题中的应用策略,比如在物理学、工程学或者计算机科学中,涉及优化问题和误差分析的场景。通过证明这种单调性,研究人员能够确保在特定参数范围内,诸如不等式约束条件下的边界估计更加精确有效。

帮我地道的翻译:The differential variational inequalities ((DVIs), for short) are useful for the study of models involving both dynamics and constraints in the form of in￾equalities. They arise in many applications: electrical circuits with ideal diodes, Coulomb friction problems for contacting bodies, economical dynamics, dynamic traffic networks. Pang and Stewart [26], [27] established the existence, unique￾ness, and Lipschitz dependence of solutions subject to boundary conditions for (DVIs) in finite dimensional spaces. Han and Pang investigated a class of dif￾ferential quasi-variational inequalities in [11], and Li, Huang and O’Regan [18] studied a class of differential mixed variational inequalities in finite dimensional Well-Posedness of Differential Mixed Quasi-Variational-Inequalities 137 spaces. Gwinner [8] obtained an equivalence result between (DVIs) and projected dynamical systems. In [9] he also proved a stability property for (DVIs) by using the monotonicity method of Browder and Minty, and Mosco set convergence. Chen and Wang [4] studied dynamic Nash equilibrium problems which have the formulation of differential mixed quasi-variational inequalities. Elastoplastic contact problems can also be incorporated into (DMQVIs) formulation because general dynamic processes in the nonsmooth unilateral contact problems are governed by quasi-variational inequalities. A numerical study for nonsmooth contact problems with Tresca friction can be found in [10], Liu, Loi and Obukhovskii [19] studied the existence and global bifurcation for periodic solutions of a class of (DVIs) by using the topological degree theory for multivalued maps and the method of guiding functions. For more details about (DVIs) we refer to [3], [30], [12], [22]–[21].

2023-05-30 上传