Scikit-learn入门:安装、数据集与无监督学习应用
142 浏览量
更新于2024-08-31
收藏 3.36MB PDF 举报
本篇文章是关于机器学习框架Scikit-learn的使用指南,作者在csdn分享了自己的学习心得。Scikit-learn是一个广泛应用于Python中的开源机器学习库,它构建在numpy、scipy和matplotlib等基础库之上。安装Scikit-learn时,首先需要确保已经安装了numpy,接着安装scipy和matplotlib,最后通过pip或anaconda来安装scikit-learn。
文章详细介绍了Scikit-learn的数据集结构,包括小数据集和大数据集的组织方式,以及库内六大主要模块的功能:分类、回归、聚类、降维、模型选择和数据预处理。无监督学习是其中的重要部分,如聚类和降维。聚类算法,如k-means、邻近传播算法和DBSCAN,都是基于距离度量对数据进行分组,如欧氏距离、曼哈顿距离和马氏距离等。k-means算法是聚类任务的经典方法,通过迭代过程将数据划分为k个紧密且分散度低的簇。
具体到应用实例,文章展示了如何使用k-means算法对31个省份的家庭平均支出数据进行聚类,每个数据点包含8个维度。初始阶段选择了load_iris数据进行分类,尽管存在一定的误差(约0.09~0.11),这展示了如何将该算法应用到实际数据分析中。此外,k-means也被用于图像分割,通过分析图像的灰度、颜色、纹理和形状等特征,将图像划分为多个区域,确保同一区域内的特征相似,不同区域差异明显。常见的图像分割技术还包括阈值分割、边缘检测、直方图分析和小波变换等。
这篇文章提供了Scikit-learn的安装指导和核心功能的深入解析,尤其突出了无监督学习的聚类和降维技术,以及它们在实际问题中的应用场景,对于初学者和进阶者都具有很高的实用价值。
2024-07-24 上传
2017-10-31 上传
2022-06-06 上传
2021-05-04 上传
2021-04-29 上传
2017-04-23 上传
2021-06-04 上传
2021-05-18 上传
weixin_38627213
- 粉丝: 1
- 资源: 972
最新资源
- 高清艺术文字图标资源,PNG和ICO格式免费下载
- mui框架HTML5应用界面组件使用示例教程
- Vue.js开发利器:chrome-vue-devtools插件解析
- 掌握ElectronBrowserJS:打造跨平台电子应用
- 前端导师教程:构建与部署社交证明页面
- Java多线程与线程安全在断点续传中的实现
- 免Root一键卸载安卓预装应用教程
- 易语言实现高级表格滚动条完美控制技巧
- 超声波测距尺的源码实现
- 数据可视化与交互:构建易用的数据界面
- 实现Discourse外聘回复自动标记的简易插件
- 链表的头插法与尾插法实现及长度计算
- Playwright与Typescript及Mocha集成:自动化UI测试实践指南
- 128x128像素线性工具图标下载集合
- 易语言安装包程序增强版:智能导入与重复库过滤
- 利用AJAX与Spotify API在Google地图中探索世界音乐排行榜