Ubuntu下CUDA、cuDNN与PyTorch的详细安装教程
需积分: 49 80 浏览量
更新于2024-08-04
收藏 1.45MB DOCX 举报
本篇文章主要介绍了如何在Ubuntu系统上安装CUDA、cuDNN以及与PyTorch相关的库,以支持深度学习和GPU加速计算。以下是详细的安装步骤和注意事项:
1. **安装CUDA**
- 首先确保安装NVIDIA显卡驱动,通过系统设置中的软件更新功能完成,然后使用`nvidia-smi`检查驱动是否安装正确。
- 根据NVIDIA显卡型号确定所需的CUDA版本,访问CUDA官网下载对应版本的.run安装包,如cuda_9.0.176.384.81_linux.run,以管理员权限运行并按照提示进行安装,但需注意跳过安装驱动的步骤,因为它已提前安装。
- 安装完成后,配置环境变量,将CUDA可执行文件和库路径添加到`/etc/profile`文件中,并重启系统以使更改生效。通过`nvcc -V`检查安装是否成功。
2. **安装cuDNN**
- 登录NVIDIA官网,由于版权原因,需要注册并下载对应CUDA版本的cuDNN(如cuDNNv7.0.5),然后解压下载的文件。
- 使用`sudo`权限执行解压命令,将cuDNN头文件复制到CUDA包含目录,例如`/usr/local/cuda/include`。
3. **与PyTorch的集成**
- 安装CUDA和cuDNN后,为了在Python中使用PyTorch,需要确保PyTorch的CUDA版本与所安装的CUDA版本兼容。安装时,可以选择PyTorch的CUDA版本作为依赖项,或者在安装后手动设置CUDA路径。
- 对于Python的安装,可以使用pip安装PyTorch及其CUDA版本,例如`pip install torch torchvision -f https://download.pytorch.org/whl/torch_stable.html`。这将自动处理与CUDA的集成。
4. **环境配置验证**
- 在安装过程中,可能会遇到一些问题,比如`nvcc`未找到。这时可能需要重新配置环境,确保CUDA和cuDNN的路径已添加到系统路径中。
这篇文章提供了在Ubuntu上构建深度学习开发环境的基础指南,对于希望通过CUDA和PyTorch进行GPU加速的开发者来说,这些步骤是必不可少的。需要注意的是,随着NVIDIA库的更新,具体版本号可能会有所变化,因此在实际操作时应参照最新的官方文档。
951 浏览量
2129 浏览量
251 浏览量
2021-03-05 上传
945 浏览量
6841 浏览量
1578 浏览量
343 浏览量
706 浏览量
qq_51929114
- 粉丝: 10
- 资源: 1
最新资源
- Excel模板价格敏感度分析.zip
- Prova-2019-01-topicos-1-revisao:节目提要(Prova deTópicosdeprogramaçãoweb 1)
- DuetSetup-1-6-1-8_2.rar
- 行业文档-设计装置-大深度水下采油平台控制器.zip
- laughing-octo-train
- AD7798-99官方驱动程序.rar
- mathgenerator:数学问题生成器,其创建目的是使自学的学生和教学组织能够轻松地访问高质量的生成的数学问题以适应他们的需求
- instagram-ruby-gem, Instagram API的官方 gem.zip
- lodash-sorted-pairs:使用lodash从对象中获取排序对(键,值)
- 19-ADC模数转换实验.zip
- Hercules_FEE_2.rar
- talk-2-group2
- DragView:Android库,用于根据类似于上一个YouTube New图形组件的可拖动元素创建出色的Android UI
- comfortable-mexican-sofa, ComfortableMexicanSofa是一款功能强大的Rails 4/5 CMS引擎.zip
- mysql-5.6.5-m8-winx64.zip
- Audiovisualizer-web-app:基于画布的音频可视化器web应用程序。 控件密集的界面使用户能够调整应用程序的许多特性