MATLAB遗传算法实现与解析
版权申诉
155 浏览量
更新于2024-07-03
收藏 1.3MB PDF 举报
"该资源为一个关于遗传算法的MATLAB代码文档,主要包含解码、目标函数计算、适应值计算和选择复制等关键步骤的实现。适用于多变量优化问题的解决,采用二进制编码转换成十进制,并通过目标函数计算适应值,最后运用赌轮盘选择法进行种群的选择复制。"
在遗传算法中,这个MATLAB代码提供了以下几个核心知识点:
1. **二进制编码与解码**:
- `decodechrom.m`函数用于将二进制编码转换为十进制数。在多变量问题中,变量间通过指定位置分隔,例如,如果有两个变量,第一个变量的二进制编码从1开始,第二个变量从11开始。长度参数`length`指定了每个变量的位数。
2. **目标函数计算**:
- `calobjvalue.m`函数负责计算目标函数值。在这个例子中,目标函数采用了一个简单的数学表达式`10*sin(5*x)+7*cos(4*x)`,其中`x`是由二进制转换得到的十进制数。实际应用中,可以根据具体优化问题替换这个函数。
3. **适应值计算**:
- `calfitvalue.m`函数计算个体的适应值。首先,全局变量`Cmin`初始化为0,然后检查每个个体的目标函数值是否大于零。如果大于零,适应值等于`Cmin + objvalue(i)`,否则适应值为0。最后,将适应值转置以便处理。
4. **选择复制**:
- 选择复制是遗传算法的关键部分,这里采用的是赌轮盘选择法。该方法基于个体的适应值进行概率选择。首先计算所有个体适应值的总和`fsum`,然后生成[0,1]区间的随机数`s`。找到满足`∑fi≥s`的最小索引`k`,则个体`k`被选入下一代。
这些MATLAB代码段展示了遗传算法的基本流程,适用于解决连续优化问题,尤其是那些可以用目标函数表达的问题。在实际应用中,用户可以根据自己的需求调整目标函数,以及适应度计算和选择策略。
2024-05-30 上传
2021-06-29 上传
2021-12-06 上传
2022-06-20 上传
2022-11-11 上传
2021-09-13 上传
2024-03-24 上传
2022-06-20 上传
苦茶子12138
- 粉丝: 1w+
- 资源: 6万+
最新资源
- C语言数组操作:高度检查器编程实践
- 基于Swift开发的嘉定单车LBS iOS应用项目解析
- 钗头凤声乐表演的二度创作分析报告
- 分布式数据库特训营全套教程资料
- JavaScript开发者Robert Bindar的博客平台
- MATLAB投影寻踪代码教程及文件解压缩指南
- HTML5拖放实现的RPSLS游戏教程
- HT://Dig引擎接口,Ampoliros开源模块应用
- 全面探测服务器性能与PHP环境的iprober PHP探针v0.024
- 新版提醒应用v2:基于MongoDB的数据存储
- 《我的世界》东方大陆1.12.2材质包深度体验
- Hypercore Promisifier: JavaScript中的回调转换为Promise包装器
- 探索开源项目Artifice:Slyme脚本与技巧游戏
- Matlab机器人学习代码解析与笔记分享
- 查尔默斯大学计算物理作业HP2解析
- GitHub问题管理新工具:GIRA-crx插件介绍