Pandas教程:数据加载与初步探索
16 浏览量
更新于2024-07-15
收藏 753KB PDF 举报
"pandas学习-第二章:读取CSV数据并初步探索"
在这个学习章节中,我们将关注如何使用Python的pandas库来处理和分析数据。首先,我们导入了两个必要的库,`numpy`和`pandas`。`numpy`是Python科学计算的核心库,提供高效的多维数组对象和数学函数;`pandas`则是数据分析的主要工具,提供了大量方便的数据结构和数据分析方法。
在代码中,我们使用`pd.read_csv()`函数读取了一个CSV文件。这个函数用于将逗号分隔值(CSV)格式的数据加载到DataFrame对象中。`'E:\jupyter Notebook\天池比赛\joyful-pandas-master\data\\table.csv'`是文件路径,`index_col='ID'`参数设置列'ID'作为DataFrame的索引列。
`df.head(20)`用来查看DataFrame的前20行数据,这有助于快速了解数据集的基本结构和内容。数据集包含了学生的个人信息,如学号(ID)、学校(School)、班级(Class)、性别(Gender)、地址(Address)、身高(Height)、体重(Weight)以及两门学科的成绩(Math和Physics)。其中,`Unnamed: 0`列可能是CSV文件中的默认列名,通常可以忽略或删除。
接下来,我们看到`df.columns`用于获取DataFrame的所有列名,这可以帮助我们确认数据集包含的变量。然后,`df=df.drop(columns=['Unnamed: 0'])`这行代码将删除名为'Unnamed: 0'的列,因为它可能是一个不必要的或者错误的列。
在实际的数据分析中,我们可能还需要进行其他预处理步骤,例如检查缺失值、转换数据类型、处理异常值、对数据进行清洗和标准化等。pandas库提供了丰富的函数来支持这些操作,例如`df.isnull().sum()`可以计算每列的缺失值数量,`df.fillna(value)`可以填充缺失值,`df.astype(dtype)`可以转换数据类型,`df.groupby()`则可以用于按特定列进行分组分析。
此外,pandas还支持各种统计计算,例如均值、中位数、标准差等,以及数据排序、筛选、合并、重塑等操作。对于数据分析新手,掌握pandas的基础知识和常用函数是十分重要的,这能极大地提升数据分析的效率和质量。
在学习pandas的过程中,了解其数据结构,如Series(一维数据结构)和DataFrame(二维表格型数据结构),以及如何通过它们进行数据操作,是关键所在。同时,熟悉Jupyter Notebook这样的交互式环境,可以方便地结合代码和可视化,有助于理解数据和验证分析结果。随着经验的积累,你将能够运用pandas解决更复杂的数据问题,从而在数据科学领域更上一层楼。
136 浏览量
547 浏览量
194 浏览量
180 浏览量
144 浏览量
2023-06-12 上传
267 浏览量
409 浏览量

weixin_38556541
- 粉丝: 6
最新资源
- RISC-V版计算机组织与设计解答全集
- Snetz:基于Python的实时网络带宽监控开源工具
- 古风雅致:中国风工作总结PPT模板
- 通胀监控工具:为客户提供实时通货膨胀跟踪UI
- 推荐BF480对讲机写频软件下载
- Win7系统4GB以上内存使用解决方案
- SNR统计信息管理:Lucent设备监控与MySQL存储
- 掌握Java连接池的实现技巧
- VS2017完整安装包下载与安装指南
- Oracle巡检工具:全面性能检测与HTML结果导出
- 水墨中国风餐饮项目策划PPT模板设计
- 探索 JavaScript 趣味游戏《猴子开心2》
- 网吧三层游戏更新方法:天下网吧三层游戏简单更新
- ASP.NET会员管理系统功能详细介绍
- 高音质LM1875/TDA2030音频功率放大器PCB设计
- 多功能停车场IC卡初始化工具软件介绍