58同城分布式存储架构实践:MySQL、MongoDB等技术应用
3星 · 超过75%的资源 需积分: 15 146 浏览量
更新于2024-07-27
收藏 1.01MB PDF 举报
58同城的分布式存储架构实践是一份详细的文档,介绍了该公司在处理大量数据和高并发场景下采用的存储解决方案。该架构涉及的关键技术包括MySQL、MongoDB、File System、Hadoop等,旨在实现数据的高效存储和管理,同时兼顾一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance),遵循ACID原则以保证数据的一致性和可靠性。
文档首先强调了在设计存储架构时,58同城考虑了基础的可用性(BASE模型),即使系统可能出现短暂的不一致,但最终会达到一致性。此外,文档提到了"Eventual Consistency"的概念,表示在某些情况下,数据可能在一段时间后才能达到一致状态。
在具体的技术选择上,58同城采用了MySQL作为关系型数据库,MongoDB作为NoSQL数据库,提供了非结构化数据的存储能力。文件系统如Hadoop HDFS用于大规模数据集的存储,Hadoop本身也是一个分布式计算框架,支持数据处理和分析。
为了提高性能和扩展性,58同城还探讨了I/O和并发处理优化,引入了Amdahl's Law和Gustafson's Law,这两个理论帮助他们理解并优化系统瓶颈。通过这些方法,他们力求在处理海量数据的同时,保持系统的可伸缩性和响应速度。
值得注意的是,文档还提及了外部行业的参考案例,如Amazon S3和Dynamo,以及Facebook的SimpleDB、Dynamo、HayStack和HBase,这些都表明分布式存储在大型互联网公司的广泛应用。Google的Megastore、GFS和Bigtable也是58同城架构学习的榜样,尤其是对于大数据处理和存储需求的解决方案。
最后,Zynga的例子展示了在游戏应用中的数据存储需求,这进一步强调了分布式存储在不同业务场景下的适用性。
58同城的分布式存储架构实践是一份结合了理论与实践经验的报告,它不仅揭示了如何构建一个高效、可扩展的存储系统,也展示了在实际操作中如何权衡各种存储选项和技术,以适应不断变化的数据处理需求。
2022-03-18 上传
2022-05-08 上传
2021-08-08 上传
2019-05-22 上传
2022-03-26 上传
2022-03-18 上传
点击了解资源详情
2021-08-08 上传
2021-08-08 上传
老胖的小四
- 粉丝: 4
- 资源: 32
最新资源
- Cucumber-JVM模板项目快速入门教程
- ECharts打造公司组织架构可视化展示
- DC Water Alerts 数据开放平台介绍
- 图形化编程打造智能家居控制系统
- 个人网站构建:使用CSS实现风格化布局
- 使用CANBUS控制LED灯柱颜色的Matlab代码实现
- ACTCMS管理系统安装与更新教程
- 快速查看IP地址及地理位置信息的View My IP插件
- Pandas库助力数据分析与编程效率提升
- Python实现k均值聚类音乐数据可视化分析
- formdotcom打造高效网络表单解决方案
- 仿京东套餐购买列表源码DYCPackage解析
- 开源管理工具orgParty:面向PartySur的多功能应用程序
- Flutter时间跟踪应用Time_tracker入门教程
- AngularJS实现自定义滑动项目及动作指南
- 掌握C++编译时打印:compile-time-printer的使用与原理