"Matlab常用算法程序: 时间序列预测算法"
版权申诉
25 浏览量
更新于2024-03-07
收藏 336KB PDF 举报
The "matlab的一些常用算法.pdf" contains a collection of commonly used algorithms in MATLAB, including the time series prediction algorithm based on the mean generating function. The program consists of three main components: predict_fun.m, timeseries.m, and seriesexpan.m. The predict_fun.m serves as the main program, while timeseries.m and seriesexpan.m are the subroutines called within the main program.
The predict_fun.m program takes two input parameters, b and step, which represent the training data and the number of prediction data, respectively. It then calculates the mean and standard deviation of the training data and normalizes it using the mean and standard deviation. Following this, the program calls the timeseries.m subroutine to generate the time series of the normalized training data. The seriesexpan.m subroutine is then called to expand the series for the specified number of prediction data points.
The output of the predict_fun.m program is the predicted data, stored in the variable ima_pre. The program utilizes the mean and standard deviation of the training data to normalize it, and then uses the timeseries.m and seriesexpan.m subroutines to generate the time series and expand the series for prediction, respectively.
Overall, the algorithm and program provided in "matlab的一些常用算法.pdf" offer a comprehensive and efficient method for time series prediction based on the mean generating function. The program is well-structured and utilizes subroutines to modularize the code, making it easier to understand and maintain. By following the steps outlined in the program, users can accurately predict time series data based on the training data provided. This makes it a valuable resource for researchers and practitioners working with time series analysis in MATLAB.
点击了解资源详情
点击了解资源详情
点击了解资源详情
2023-03-01 上传
2021-07-03 上传
2021-09-14 上传
2021-10-30 上传
2021-10-30 上传
2022-06-06 上传
G11176593
- 粉丝: 6870
- 资源: 3万+
最新资源
- 深入浅出:自定义 Grunt 任务的实践指南
- 网络物理突变工具的多点路径规划实现与分析
- multifeed: 实现多作者间的超核心共享与同步技术
- C++商品交易系统实习项目详细要求
- macOS系统Python模块whl包安装教程
- 掌握fullstackJS:构建React框架与快速开发应用
- React-Purify: 实现React组件纯净方法的工具介绍
- deck.js:构建现代HTML演示的JavaScript库
- nunn:现代C++17实现的机器学习库开源项目
- Python安装包 Acquisition-4.12-cp35-cp35m-win_amd64.whl.zip 使用说明
- Amaranthus-tuberculatus基因组分析脚本集
- Ubuntu 12.04下Realtek RTL8821AE驱动的向后移植指南
- 掌握Jest环境下的最新jsdom功能
- CAGI Toolkit:开源Asterisk PBX的AGI应用开发
- MyDropDemo: 体验QGraphicsView的拖放功能
- 远程FPGA平台上的Quartus II17.1 LCD色块闪烁现象解析