用友网络电子采购系统V6.5操作手册

需积分: 10 4 下载量 4 浏览量 更新于2024-07-16 收藏 4.81MB PDF 举报
"NCV6 5产品手册-电子采购.pdf" 本文档是用友网络科技股份有限公司关于其NCV6.5版本电子采购产品的详细产品手册。电子采购系统旨在为专业采购人员和供应商提供一个在线协作平台,实现招投标、询价、谈判、竞价等采购流程的高效管理。该系统主要由两大部分构成:电子采购后台和供应商门户,分别服务于采购团队和供应商。 1. 产品概述: NCV6.5电子采购系统提供了全面的采购管理解决方案,支持不同类型的采购目录,如集采目录、区域集采目录和分散采购目录,以满足企业多样化的采购需求。系统涵盖了从需求立项、供应商选择到合同签订和执行的整个采购生命周期。 2. 应用场景: - 采购目录管理:包括集中采购、区域集中采购和分散采购,以适应不同规模和地域的采购策略。 - 立项:详细介绍了需求自主寻源、需求委托寻源、直接采购、快速询报价以及岗位权限分配等流程。 - 专家管理:涉及专家资格评定、专家抽取规则,确保评审过程公正专业。 - 寻源与协同:涵盖邀请供应商、发标投标、多轮谈判、竞价、开标、评标、定标等一系列流程。 - 合同管理:包括统谈统签、统谈分签、数量、金额、价格和分类协议合同的签订与执行。 - 采购交易协同:订单确认、合同确认、价格变更、发货到货计划、信息共享、VMI(供应商管理库存)协同和合同调价等功能,确保供应链的顺畅运作。 - 集成应用:与NC57供应链系统的无缝对接,实现档案同步和请购单的自动流转。 3. 初始准备: 在开始使用电子采购系统之前,需要配置合适的管控模式,例如多组织管理,并通过企业建模平台进行基础数据的维护,确保系统的稳定运行和数据的准确性。 用友NC V6.5电子采购系统结合了现代信息技术,实现了采购流程的数字化和自动化,提高了效率,降低了成本,同时保证了采购过程的透明度和合规性。对于希望优化采购管理的企业来说,这是一个强大的工具。

class SVDRecommender: def init(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) # Gramian matrix has real non-negative eigenvalues. eigvals = np.maximum(eigvals.real, 0) # Use complex detection of small eigenvalues from pinvh. t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) # Get a mask indicating which eigenpairs are not degenerate tiny, # and create a reordering array for thresholded singular values. above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh将这段代码放入一个.py文件中,用Spyder查看,有报错,可能是缩进有问题,无法被调用,根据这个问题,给出解决办法,给出改正后的完整代码

2023-06-07 上传

class svd_recommender_py(): #svd矩阵推荐 def svds(A, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. #获得隐式定义的格拉米矩阵的低秩近似。 #这不是解决问题的稳定方法。 solver == 'arpack' eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) #格拉米矩阵具有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复杂检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #得到一个指示哪些本征对不是退化微小的掩码, #并创建阈值奇异值的重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh这段代码主要是为了将scipy包中的SVD计算方法封装成一个自定义类,是否封装合适?如果不合适,给出修改后的完整代码

2023-06-07 上传

class SVDRecommender: def __init__(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if self.which == 'LM': largest = True elif self.which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if self.k <= 0 or self.k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) #获得隐式定义的格拉米矩阵的低秩近似。 eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv, which=self.which, v0=self.v0) #格拉米矩阵有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复数检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #获得一个指示哪些本征对不是简并微小的掩码, #并为阈值奇异值创建一个重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = self.k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not self.return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh def _augmented_orthonormal_cols(U, n): if U.shape[0] <= n: return U Q, R = np.linalg.qr(U) return Q[:, :n] def _augmented_orthonormal_rows(V, n): if V.shape[1] <= n: return V Q, R = np.linalg.qr(V.T) return Q[:, :n].T def _herm(x): return np.conjugate(x.T) 将上述代码修改为使用LM,迭代器使用arpack

2023-06-08 上传