实战TensorFlow:13个项目带你入门机器学习与深度学习

4星 · 超过85%的资源 需积分: 10 8 下载量 161 浏览量 更新于2024-07-18 收藏 13.19MB PDF 举报
《利用TensorFlow构建机器学习项目》是一本实践导向的教程,由系统工程师兼阿根廷Universidad Tecnológica Nacional博士生Rodolfo Bonnin所著。这本书在理论教学之外,提供了十三个实际项目和四个示例,旨在帮助读者掌握如何在生产环境中有效地应用TensorFlow进行高级数值计算。作者以其丰富的经验,从数据探索与转换开始,引导读者逐步学习TensorFlow的关键特性。 本书的主要内容包括: 1. 探索和转换数据:介绍了TensorFlow的核心数据结构——张量(tensor),包括张量的秩、形状和类型。作者解释了如何创建新的张量,并强调了从NumPy转换到TensorFlow以及反之的重要性。 2. 构建计算流程:学习如何处理TensorFlow的数据流图,理解如何构建和执行计算图,以及如何使用操作对象方法进行各种操作,如数据输入(feeding)、变量管理(包括初始化)和模型保存。 3. 使用Session运行程序:章节中详细介绍了如何使用会话(Sessions)来运行和控制计算图的执行。 4. 机器学习项目实战:涵盖了多项关键技术,如线性回归用于时间序列预测,逻辑回归分析,以及简单的前馈神经网络。此外,书中还涉及卷积神经网络(CNN)在图像分类和特征检测中的应用,以及循环神经网络(RNN)和长短时记忆网络(LSTM)在字符识别问题中的解决方案。 通过这些项目,读者将学习如何加载、处理和保存复杂的数据集,解决分类和回归问题,以及在大规模环境下运行和部署模型,包括GPU加速和模型服务。此外,书中还提供了图书馆安装指南和实用技巧,确保读者能够充分利用TensorFlow的所有功能。 《利用TensorFlow构建机器学习项目》适合那些希望摆脱理论,直接通过实际项目提升TensorFlow技能的读者,无论是初学者还是有经验的开发人员,都能从中获益匪浅。出版日期为2016年11月,由Packt Publishing Ltd.发行,是理解和应用TensorFlow进行现代机器学习项目的实用指南。
2018-10-06 上传
Create Deep Learning and Reinforcement Learning apps for multiple platforms with TensorFlow Key Features Build TensorFlow-powered AI applications for mobile and embedded devices Learn modern AI topics such as computer vision, NLP, and deep reinforcement learning Get practical insights and exclusive working code not available in the TensorFlow documentation Book Description As a developer, you always need to keep an eye out and be ready for what will be trending soon, while also focusing on what's trending currently. So, what's better than learning about the integration of the best of both worlds, the present and the future? Artificial Intelligence (AI) is widely regarded as the next big thing after mobile, and Google's TensorFlow is the leading open source machine learning framework, the hottest branch of AI. This book covers more than 10 complete iOS, Android, and Raspberry Pi apps powered by TensorFlow and built from scratch, running all kinds of cool TensorFlow models offline on-device: from computer vision, speech and language processing to generative adversarial networks and AlphaZero-like deep reinforcement learning. You'll learn how to use or retrain existing TensorFlow models, build your own models, and develop intelligent mobile apps running those TensorFlow models. You'll learn how to quickly build such apps with step-by-step tutorials and how to avoid many pitfalls in the process with lots of hard-earned troubleshooting tips. What you will learn Classify images with transfer learning Detect objects and their locations Transform pictures with amazing art styles Understand simple speech commands Describe images in natural language Recognize drawing with Convolutional Neural Network and Long Short-Term Memory Predict stock price with Recurrent Neural Network in TensorFlow and Keras Generate and enhance images with generative adversarial networks Build AlphaZero-like mobile game app in TensorFlow and Keras