Matlab实现k-means聚类算法
下载需积分: 10 | TXT格式 | 2KB |
更新于2024-09-10
| 27 浏览量 | 举报
"该资源是关于使用MATLAB实现k-means聚类算法的代码示例。这个实现无需用户输入参数,可以直接运行,并且允许用户更改聚类数量(N)。代码中通过生成三个不同高斯分布的数据集进行演示,分别用蓝色、红色和绿色标记。在迭代过程中,它通过计算样本到各个聚类中心的距离来更新聚类归属,并当聚类中心不再显著变化时停止迭代。"
在机器学习领域,k-means算法是一种广泛应用的无监督学习方法,主要用于数据的聚类分析。它的目标是将数据集分割成k个不同的簇,使得簇内的数据点相互之间尽可能接近,而不同簇之间的数据点尽可能远离。以下是k-means算法在MATLAB中实现的关键步骤:
1. **数据生成**:首先,代码生成了三个二维高斯分布的数据集,每个数据集代表一类。`mvnrnd`函数用于生成多维正态分布的随机样本。
2. **初始化聚类中心**:在k-means算法开始时,需要随机选择k个数据点作为初始聚类中心。这里,代码使用`randi(300,1)`随机选择300个样本中的一个作为聚类中心。
3. **计算距离并分配类别**:对于每个数据点,计算其与所有聚类中心的距离,然后将其分配给最近的聚类中心。`norm`函数用于计算欧氏距离。
4. **更新聚类中心**:在每个迭代步骤中,根据属于同一簇的所有数据点的平均值更新聚类中心。
5. **迭代检查**:通过比较新旧聚类中心的变化来判断是否达到收敛条件。如果所有聚类中心的移动小于某个阈值(这里为0.1),则认为算法已经收敛,迭代结束。
6. **循环执行**:在满足终止条件之前,重复步骤3和4,直到找到最优的聚类结果。
7. **结果存储**:`pattern`矩阵记录了每个数据点所属的簇,`center`矩阵存储了聚类中心的位置。
在实际应用中,k-means算法的选择依赖于数据的特性。它适用于处理大规模数据,并且对凸形簇效果良好。然而,它也有一些限制,如对初始聚类中心敏感,可能陷入局部最优,以及无法处理非凸形或大小不一的簇。在使用时,可以结合其他方法,如多次运行并选择最佳结果,或者采用更复杂的聚类算法,如谱聚类或DBSCAN,来克服这些限制。
相关推荐










shuijiaowomingzila
- 粉丝: 0
最新资源
- 有效清除快捷方式病毒的杀毒软件使用指南
- 高级Excel文件修复工具:一键修复损坏表格
- Angular轻量级库angular-inviewport实现视口检测
- Axis2WebService源码分析与本地测试指南
- ALIENTEK MiniSTM32开发板扩展例程详解
- Spark学习资源:三本精选书籍与面试题参考
- Thinkful作业数据集加载教程
- Android即时通讯聊天工具及动态表情开发指南
- Nx与Azure构建系统集成以优化monorepo CI流程
- PW光学设计误差计算方法解析
- 《深入理解计算机系统》第二版习题答案解析
- MakeCode扩展:lewis_anaya_setup2项目教程
- 尚书七号OCR软件:提升文档电子化效率
- 文件传输利器:uploadbean.jar与filemover.jar的综合应用
- ALIENTEK MiniSTM32开发板例程使用教程
- MyBatis 3.2.8 源码与二进制文件下载指南