四元数与方向余弦:旋转变换在惯性导航中的应用
需积分: 50 49 浏览量
更新于2024-08-07
收藏 6.85MB PDF 举报
"方向余弦矩阵的建立是通过四元数旋转变换来完成的,这一过程在坐标系转换和三维空间的旋转中起到关键作用。四元数是一种数学工具,用于表示三维空间中的旋转。在给定的描述中,讨论了如何通过两次旋转(第一次绕Z轴旋转ψ角,第二次绕OX'轴旋转θ角)来合成一个复合转动。每次旋转都有对应的转动四元数,分别为q1和q2。四元数的合成公式可以用来计算最终的转动四元数q。
第一次旋转,转轴n与Z轴重合,转动四元数q1表示为q1 = cψ + sinψk,其中cψ是cos(ψ),k是Z轴的单位向量。第二次旋转,转轴n相对于原参考坐标系是(cosθi + sinθj),其转动四元数q2为q2 = cosθ + sinθ(i + j)。根据四元数乘法,可以将这两个旋转合并为一个整体的转动四元数q。
此外,提到的《惯性技术》一书,由邓正隆编著,详细介绍了惯性导航系统的基础知识,包括工作原理、敏感元件、捷联式导航系统算法、误差传播特性、组合式导航系统等内容。这本书适合于自动化和导航专业的学生及教师作为学习参考资料。书中涵盖的惯性导航是基于物体运动学原理,利用陀螺仪和加速度计等设备来确定物体在三维空间中的位置、姿态和速度,广泛应用于航空、航海和军事等领域。"
在这个主题中,主要知识点包括:
1. 方向余弦矩阵:它是描述两个坐标系之间相对关系的矩阵,特别是在三维空间中的旋转转换。
2. 四元数:四元数用于数学上表示三维空间的旋转,比欧拉角或旋转矩阵更方便,因为它避免了万向节死锁问题。
3. 惯性导航:基于物体的惯性运动,使用陀螺仪和加速度计测量物体的运动状态,从而计算其位置、速度和姿态。
4. 惯性导航系统:包括敏感元件(如陀螺仪和加速度计)、系统平台和算法,用于连续跟踪物体的位置。
5. 捷联式惯性导航系统:不依赖任何外部参考,而是直接使用传感器数据进行导航计算,具有较高的自主性和实时性。
6. 误差传播:在惯性导航系统中,初始误差会随着时间的推移而累积,理解并控制这种误差传播至关重要。
7. 组合式惯性导航系统:结合其他导航技术(如GPS),以提高精度和鲁棒性。
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
2019-02-02 上传
2020-03-03 上传
2014-07-29 上传
2021-05-23 上传
2014-09-21 上传
Matthew_牛
- 粉丝: 41
- 资源: 3795
最新资源
- MATLAB新功能:Multi-frame ViewRGB制作彩色图阴影
- XKCD Substitutions 3-crx插件:创新的网页文字替换工具
- Python实现8位等离子效果开源项目plasma.py解读
- 维护商店移动应用:基于PhoneGap的移动API应用
- Laravel-Admin的Redis Manager扩展使用教程
- Jekyll代理主题使用指南及文件结构解析
- cPanel中PHP多版本插件的安装与配置指南
- 深入探讨React和Typescript在Alias kopio游戏中的应用
- node.js OSC服务器实现:Gibber消息转换技术解析
- 体验最新升级版的mdbootstrap pro 6.1.0组件库
- 超市盘点过机系统实现与delphi应用
- Boogle: 探索 Python 编程的 Boggle 仿制品
- C++实现的Physics2D简易2D物理模拟
- 傅里叶级数在分数阶微分积分计算中的应用与实现
- Windows Phone与PhoneGap应用隔离存储文件访问方法
- iso8601-interval-recurrence:掌握ISO8601日期范围与重复间隔检查