Spark入门与框架详解:统一分析引擎与Hadoop对比
需积分: 0 105 浏览量
更新于2024-08-04
收藏 24KB MD 举报
Spark笔记+code是一份个人的学习资源,主要聚焦于Apache Spark这个强大的大数据处理框架。Spark被定义为一个统一的分析引擎,特别适合大规模数据的处理,它与Hadoop有着显著的区别。相较于Hadoop MapReduce,Spark在计算效率上表现出色,但Hadoop生态系统更为全面,包括存储(如HDFS)和资源管理(YARN)。Spark框架模块由SparkCore、SparkSQL、SparkStreaming、SparkGraphX和SparkMLlib组成。
SparkCore是Spark的基石,它提供了基础的功能和分布式计算的支持,使用弹性分布式数据集(RDD)作为数据抽象,支持多种编程语言接口,如Python、Java和Scala,用于处理海量离线数据的批处理计算。
SparkSQL则是在SparkCore的基础上扩展,专注于结构化数据的处理。它允许用户使用SQL进行数据操作,虽然主要面向离线计算,但它为Spark提供了强大的数据分析能力,如数据查询、清洗和转换等。此外,Spark通过SparkSQL还支持数据的读写,能够无缝连接到各种数据源,包括关系型数据库和Hadoop文件系统。
SparkStreaming负责实时流处理,能够在数据流中持续执行任务,这对于处理实时数据流分析至关重要。SparkGraphX则专注于图计算,使得Spark能够处理复杂网络数据和社交网络分析。
SparkMLlib是Spark机器学习库,它是Spark生态系统中的一个重要组成部分,提供了大量的机器学习算法和工具,使得数据科学家能够轻松构建和部署机器学习模型,进行预测和建模分析。
这份笔记旨在帮助学习者理解Spark的基本概念、其与Hadoop的关系以及各模块的功能,并通过实际代码示例来加深理解和实践。无论是数据处理、分析、流处理还是机器学习,Spark都展现了其在现代大数据处理中的强大和灵活性。随着技术的发展和Spark的不断演进,这份笔记将随着作者的学习进程持续更新,保持时效性和深度。
2021-03-24 上传
2017-03-13 上传
2021-03-24 上传
2021-03-24 上传
2021-03-24 上传
2021-03-28 上传
2021-03-23 上传
2021-05-12 上传
2021-03-22 上传
霸霸软上弓
- 粉丝: 0
- 资源: 5
最新资源
- Aspose资源包:转PDF无水印学习工具
- Go语言控制台输入输出操作教程
- 红外遥控报警器原理及应用详解下载
- 控制卷筒纸侧面位置的先进装置技术解析
- 易语言加解密例程源码详解与实践
- SpringMVC客户管理系统:Hibernate与Bootstrap集成实践
- 深入理解JavaScript Set与WeakSet的使用
- 深入解析接收存储及发送装置的广播技术方法
- zyString模块1.0源码公开-易语言编程利器
- Android记分板UI设计:SimpleScoreboard的简洁与高效
- 量子网格列设置存储组件:开源解决方案
- 全面技术源码合集:CcVita Php Check v1.1
- 中军创易语言抢购软件:付款功能解析
- Python手动实现图像滤波教程
- MATLAB源代码实现基于DFT的量子传输分析
- 开源程序Hukoch.exe:简化食谱管理与导入功能