掌握iOS机器学习:Packt《使用Core ML进行机器学习》代码仓库解析

需积分: 10 1 下载量 105 浏览量 更新于2024-11-20 收藏 514.78MB ZIP 举报
资源摘要信息: "《使用Core ML进行机器学习》是Packt出版的一本专注于iOS平台机器学习应用开发的指南。本书主要面向iOS开发人员,详细介绍了如何使用苹果的Core ML框架来训练和集成机器学习模型到移动应用程序中。Core ML(Core Machine Learning)是苹果公司在2017年WWDC大会上推出的机器学习框架,旨在简化机器学习模型在iOS设备上的应用。该框架支持广泛的机器学习任务,并能够将模型转化为高效的iOS原生代码,以便在设备上进行快速且隐私保护的推理。 本书的核心内容涵盖了以下几个方面: 1. 机器学习项目基础知识:介绍了机器学习(ML)项目的基本组成部分,包括算法、问题和数据的理解。这为读者构建机器学习模型提供了必要的理论基础。 2. 掌握Core ML的模型获取与导入:讲解了如何获取和导入机器学习模型,并使用coremltools库将其转换为可在iOS中使用的格式。这涉及到模型的转换和类生成的相关知识。 3. 数据准备与结果解释:教授了如何准备和处理适合机器学习模型的数据,以及如何解释模型输出的结果,以此来优化解决方案。 4. 自定义图层的创建与优化:因为Core ML可能不支持某些特定的图层,本书还指导如何为这些图层创建自定义的解决方案,并提供了优化自定义图层的技巧。 5. 使用卷积神经网络(CNN)处理图像和视频数据:展示了如何使用CNN技术,将训练好的Core ML模型应用于图像和视频数据的处理,这在图像识别、面部识别和场景理解等领域应用广泛。 本书的代码示例和教程被组织在不同的文件夹中,例如"Chapter05",每个章节都围绕特定的学习目标展开,读者可以根据章节文件夹中的代码示例进行实践和学习。 此外,本书还可能涉及到Jupyter Notebook,这可能表明书中包含了可以交互式执行的代码示例,这对于学习和实验机器学习算法非常有帮助。Jupyter Notebook是一种开源的Web应用程序,允许用户创建和分享包含实时代码、方程、可视化和解释性文本的文档。 最后,"Machine-Learning-with-Core-ML-master"这个压缩包文件名称列表表明了本书相关的代码、文档和其他资源可能被存放在一个名为"Machine-Learning-with-Core-ML-master"的仓库中。开发者可以通过访问这个仓库,下载完整的代码资源,进行机器学习模型的训练和集成工作。 总之,《使用Core ML进行机器学习》不仅是一本实践指南,也是学习如何将最新的机器学习技术集成到iOS应用中的宝贵资源。本书提供了一条从理论到实践的快速通道,使iOS开发人员能够轻松掌握在移动设备上实现智能功能的方法。"
2018-07-02 上传
Leverage the power of Apple's Core ML to create smart iOS apps Key Features Explore the concepts of machine learning and Apple's Core ML APIs Use Core ML to understand and transform images and videos Exploit the power of using CNN and RNN in iOS applications Book Description Core ML is a popular framework by Apple, with APIs designed to support various machine learning tasks. It allows you to train your machine learning models and then integrate them into your iOS apps. Machine Learning with Core ML is a fun and practical guide that not only demystifies Core ML but also sheds light on machine learning. In this book, you'll walk through realistic and interesting examples of machine learning in the context of mobile platforms (specifically iOS). You'll learn to implement Core ML for visual-based applications using the principles of transfer learning and neural networks. Having got to grips with the basics, you'll discover a series of seven examples, each providing a new use-case that uncovers how machine learning can be applied along with the related concepts. By the end of the book, you will have the skills required to put machine learning to work in their own applications, using the Core ML APIs What you will learn Understand components of an ML project using algorithms, problems, and data Master Core ML by obtaining and importing machine learning model, and generate classes Prepare data for machine learning model and interpret results for optimized solutions Create and optimize custom layers for unsupported layers Apply CoreML to image and video data using CNN Learn the qualities of RNN to recognize sketches, and augment drawing Use Core ML transfer learning to execute style transfer on images Who This Book Is For Machine Learning with Core ML is for you if you are an intermediate iOS developer interested in applying machine learning to your mobile apps. This book is also for those who are machine learning developers or deep learning practitioners who want to bring the power of neural networks in their iOS apps. Some exposure to machine learning concepts would be beneficial but not essential, as this book acts as a launchpad into the world of machine learning for developers. Table of Contents Introduction to Machine Learning Introduction to Apple Core ML Recognising objects in the world Locating Objects in the World Facial Emotion Detection with Convolutional Neural Networks Transfer Learning - Creating art with style transfer Assisted drawing with Convolutional Neural Networks Assisted drawing with Recurrent Neural Networks Object segmentation using neural networks An introduction to Create ML