超声波测距模组V2.0:源码、原理与PCB设计解析

版权申诉
5星 · 超过95%的资源 1 下载量 132 浏览量 更新于2024-11-16 收藏 1.24MB RAR 举报
资源摘要信息:"超声波测距模组V2.0是一个集成了超声波传感器技术的硬件模块,主要用于测量物体与传感器之间的距离。该模组包含完整的源代码、原理图以及PCB布线图,方便开发者进行研究和应用开发。" ### 超声波测距技术知识点 1. **超声波定义与特性**: - 超声波是指频率高于人耳听觉范围(通常高于20kHz)的声波。 - 超声波具有方向性强、穿透力强、反射能力强等特点,使其在距离测量、物体定位等领域有广泛的应用。 2. **超声波测距原理**: - 超声波测距基于回声定位原理,即发射超声波脉冲并接收由物体表面反射回来的声波。 - 通过测量发射声波与接收回波之间的时间差,并结合声波在介质中传播的速度(在标准条件下约为340m/s),计算出距离。 3. **超声波测距模块的应用场景**: - 机器人避障:利用超声波测距模块检测前方障碍物,帮助机器人做出避障决策。 - 停车辅助:汽车倒车雷达系统中使用超声波传感器来测量车辆与后方障碍物的距离。 - 液位检测:在工业生产中监测液体容器中的液位高度。 - 非接触测量:在一些需要无接触测量距离的场合,如自动门控制系统。 4. **超声波测距模块组件**: - 超声波发射器:负责产生高频的超声波信号。 - 超声波接收器:检测并接收从物体表面反射回来的声波。 - 控制单元:通常包含微控制器,用于控制发射过程、接收回波并处理数据。 5. **超声波传感器的类型**: - 按频率分:有低频、中频、高频等不同种类,不同频率的传感器适用于不同的环境和测距距离。 - 按测量方式分:有单发单收、单发双收等类型。 6. **超声波测距模块的优缺点**: - 优点:成本低、非侵入式测量、响应速度快。 - 缺点:精度受环境影响(如温度、湿度、风速)、最大测量距离有限、存在盲区。 ### 模组V2.0详细内容 1. **源代码**: - 源代码通常包括微控制器的固件,用于控制超声波模块的操作,包括脉冲的发射、回波的接收与解析,以及距离的计算。 - 开发者可以利用源代码来优化算法,提高测量精度或满足特定应用的需求。 2. **原理图**: - 原理图是电子设备设计中展示电气连接和组件功能的图表。 - 原理图将指导如何在PCB上布局电子元件,以及它们之间的连接关系。 3. **PCB布线图**: - PCB布线图是电路板的平面布局图,展示各电子元件的位置和电路板上的走线。 - 合理的PCB设计能够提高电路的稳定性和抗干扰能力,对于超声波测距模块而言,需要特别注意信号的完整性和纯净度。 ### 结论 超声波测距模块V2.0是一套完整的硬件解决方案,涵盖了从基本原理到实际应用的所有重要方面。它不仅包括了硬件资源(源代码、原理图、PCB图),还包含了测量距离的核心技术。开发者可以根据这些资料进行二次开发,以适应特定的工程应用。超声波测距技术在工业自动化、智能家居、机器人技术等领域具有广泛的应用前景。

import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码

102 浏览量

import pandas as pd import numpy as np # 计算用户对歌曲的播放比例 triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_mergedpd[['user', 'listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count': 'total_listen_count'}, inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_mergedpd, triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_mergedpd['fractional_play_count'] = triplet_dataset_sub_song_mergedpd['listen_count'] / triplet_dataset_sub_song_merged['total_listen_count'] # 将用户和歌曲编码为数字 small_set = triplet_dataset_sub_song_mergedpd user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index': 'user_index'}, inplace=True) song_codes.rename(columns={'index': 'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set, song_codes, how='left') small_set = pd.merge(small_set, user_codes, how='left') # 将数据转换为稀疏矩阵形式 from scipy.sparse import coo_matrix mat_candidate = small_set[['us_index_value', 'so_index_value', 'fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)), dtype=float) # 使用SVD方法进行矩阵分解并进行推荐 from scipy.sparse import csc_matrix from scipy.sparse.linalg import svds import math as mt def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i, i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S * Vt max_recommendation = 250 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID, max_recommendation), dtype=np.float16) for userTest in uTest: prod = U[userTest, :] * rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K = 50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) uTest = [4, 5, 6, 7, 8, 73, 23] # uTest=[1b5bb32767963cbc215d27a24fef1aa01e933025] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt 继续将这段代码输出完整

168 浏览量

将上述代码放入了Recommenders.py文件中,作为一个自定义工具包。将下列代码中调用scipy包中svd的部分。转为使用Recommenders.py工具包中封装的svd方法。给出修改后的完整代码。import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import * from scipy.sparse.linalg import svds from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix # Load and preprocess data triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd # load dataset triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count'] # Convert data to sparse matrix format small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) # Compute SVD def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i,i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S*Vt max_recommendation = 10 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID,max_recommendation ), dtype=np.float16) for userTest in uTest: prod = U[userTest, :]*rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K=50 # number of factors urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) # Compute recommendations for test users # Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt, uTest, K, True) # Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)

2023-06-07 上传