移动最小二乘增量式多视点云数据融合算法研究

4星 · 超过85%的资源 需积分: 6 10 下载量 24 浏览量 更新于2024-09-20 收藏 1.25MB PDF 举报
"移动最小二乘增量式多视点云数据融合算法是针对散乱数据点的一种处理方法,旨在提高三维重建的精度和鲁棒性。该算法在多视图几何的基础上,通过融合不同视角的点云数据来减少匹配误差、冗余和畸变,从而恢复物体表面的二维流形。其核心思想是在每一步中,找到当前处理的点云与已融合点云的重叠部分,利用移动最小二乘曲面拟合技术构建曲面,并将对应点合并到融合数据集中,实现增量式的融合过程。实验结果表明,该算法能够有效处理具有较大匹配误差、噪声和畸变的多视点云数据,提供良好的融合效果。" 本文详细介绍了移动最小二乘增量式多视点云数据融合算法的原理和实施步骤。首先,算法基于移动最小二乘(Moving Least Squares, MLS)方法,这是一种用于非均匀分布散乱数据拟合的强大工具,能够通过局部多项式拟合来逼近复杂表面。在多视点云数据融合中,每一路点云可以视为物体表面的二维流形的一次不精确采样,其中包含了匹配误差、数据冗余和几何畸变。 接着,算法的关键在于增量式处理。对于每一份新的点云数据,算法首先确定它与已经融合过的点云数据的重叠区域。然后,在这个重叠区域的数据集上应用移动最小二乘技术构建一个局部曲面模型。通过这个模型,可以将重叠区域的点映射到一个新的统一坐标系下,将这些点合并到现有的融合点云数据集中,从而逐步完善整个物体的三维表示。 这种增量式的融合策略有几个优点:一是它可以逐步减少全局拟合带来的计算复杂度,二是能够适应数据的变化和更新,三是能有效处理匹配误差,四是能够适应噪声和畸变,保持数据的稳定性。因此,该算法特别适合处理大规模、高噪声的多视点云数据,为三维重建提供了更准确和稳健的解决方案。 最后,作者通过实验验证了算法的有效性,展示了在存在匹配误差、噪声和畸变的情况下,该算法仍然能够得到高质量的融合结果。这表明,移动最小二乘增量式多视点云数据融合算法对于实际的三维重构任务具有很高的实用价值,特别是在自动化和机器人领域的三维环境感知和建模中。 该论文提出的移动最小二乘增量式多视点云数据融合算法为散乱数据处理和三维重建提供了一个创新且有效的解决方案,对于提高三维重建的精度和鲁棒性具有重要意义。