改进DE算法在负荷建模参数辨识中的应用
需积分: 0 62 浏览量
更新于2024-08-04
收藏 1.02MB PDF 举报
"基于改进DE算法的负荷建模参数辨识-许津津.pdf"
本文主要探讨了在电力系统中,负荷建模参数辨识的重要性及其应用,特别关注了一种基于改进差分进化(DE)算法的方法。负荷建模是电力系统分析与控制的基础,分为基于元件和基于量测两种主要方法。基于量测的负荷建模由于能够反映负荷的实时变化,被广泛应用于实际操作中。然而,当考虑负荷的时变特性时,建模过程转化为一个数学优化问题,这就需要高效且可靠的优化算法来确定最佳参数。
微分进化算法(DE)是一种全局优化工具,它对初始参数的选择不敏感,且在经过改进后可以提升收敛速度,避免过早收敛(早熟现象)。在负荷建模参数辨识中,DE算法的这些优点使其成为一种理想的候选方法。作者在此基础上进一步改进了DE算法,借鉴了遗传算法中的移民策略,以防止算法在优化过程中过早收敛,确保了搜索的多样性,从而提高了参数辨识的精度。
通过两个实际测量的负荷建模参数辨识案例,文章展示了改进后的DE算法相比于改进遗传算法、蚁群算法和粒子群算法具有更优的性能。这些案例分析证明了改进DE算法在解决负荷建模参数辨识问题上的有效性,为电力系统的稳定运行和控制提供了有力的理论支持。
关键词涉及了以下几个方面:改进微分进化,这是优化算法的核心;改进遗传算法,作为对比和参考的优化方法;参数辨识,即寻找最佳模型参数的过程;负荷建模,是电力系统研究的关键部分;电力系统,是所有讨论的背景和应用领域。这些关键词共同构成了文章的研究焦点,展示了在电力系统建模中,利用智能优化算法进行参数识别的最新进展。
2022-04-19 上传
2021-02-22 上传
2021-10-03 上传
2023-06-01 上传
2023-12-22 上传
2023-10-31 上传
2023-11-24 上传
2024-09-11 上传
2023-05-26 上传
matlab科研助手
- 粉丝: 3w+
- 资源: 5974
最新资源
- Python中快速友好的MessagePack序列化库msgspec
- 大学生社团管理系统设计与实现
- 基于Netbeans和JavaFX的宿舍管理系统开发与实践
- NodeJS打造Discord机器人:kazzcord功能全解析
- 小学教学与管理一体化:校务管理系统v***
- AppDeploy neXtGen:无需代理的Windows AD集成软件自动分发
- 基于SSM和JSP技术的网上商城系统开发
- 探索ANOIRA16的GitHub托管测试网站之路
- 语音性别识别:机器学习模型的精确度提升策略
- 利用MATLAB代码让古董486电脑焕发新生
- Erlang VM上的分布式生命游戏实现与Elixir设计
- 一键下载管理 - Go to Downloads-crx插件
- Java SSM框架开发的客户关系管理系统
- 使用SQL数据库和Django开发应用程序指南
- Spring Security实战指南:详细示例与应用
- Quarkus项目测试展示柜:Cucumber与FitNesse实践