Journal of Computer Applications
计算机应用,
2014
,
34( 8) : 2365 - 2370
ISSN
1001 -9081
CODEN JYIIDU
2014-08-
10
http://www.
joca.
巳
n
文章编号
:1001-9081(2014)08-2365-06
doi: 10.
I1
772/j.
issn.
1001
-908
1.
2014. 08. 2365
地球观测
1
号高光谱与全色图像融合的最佳方法
林志垒\晏路明
(福建师范大学地理科学学|珑,福州、
1350007)
(
*通信作者电子邮箱
zllin99@
163.
com)
摘
要:受制于成像原理及制造技术等因素,航天高光谱遥感图像的空间分辨率相对较低,为此提出将高光谱图
像与高空间分辨率图像进行融合处理,设计最佳的增强高光谱遥感图像空间分辨率的融合算法。针对地球观测
1
号
( EO- 1 )
Hyperion
高光谱图像和高级陆地成像仪
(ALI)
全色波段图像的特点,从
9
种具体遥感图像融合算法中选用
4
种融合算法开展山区与城市的数据融合实验,即
Gram-Schmidt
光谱锐化融合法、平滑调节滤波
(SFIM)
交换融合法、加
权平均法
(WAM)
融合法和小波交换
(WT)
融合法,并分别从定性、定量和分类精度三方面对这些方法的融合效采进
行综合评价与对比分析,从而确定适合
EO-l
高光谱与会色图像融合的最佳方法。实验结果显示:从图像融合效果
看,在所采用的
4
种融合方法中,
Gram-Schmidt
光谱锐化融合法的效果最好;从图像分类效采看,基于融合图像的分类
效果要优于基于源图像的分类效果。理论分析与实验结采均表明:
Gram-Schmidt
光谱锐化融合法是一种较为理想的
高光谱与高空间分辨率遥感图像的融合算法,为提高高光谱遥感图像的清晰度、可靠性及图像的地物识别和分类的
准确性提供有力的支持。
关键词:高光谱图像;数据融合;综合评价;地球观测
1
号
中图分类号:
T
P7
5
1.
1;
T
P3
9
1.
41
文献标志码
:A
Best fusion method
of
hyperspectraI and
panchromatic imagery based on
Earth
Observing-l satellite
LIN
Zhilei
布,
YAN
Luming
( College 01
Geogr
α
'ph
阳
1
Scie
旧时
,
Fujian Normal Uniærsity, Fuzhou
F
,
叼
iian
350007
, China)
Abstract:
Subject
to
the imaging principle, manufacturing technology and other factors, the spatial resolution of
spaceborne hyperspectral remote sensing imagery is relatively low. Therefore
, the thesis proposed the image fusion of
hyperspectral imagery and high spatial resolution imagery
, and designed the best fusion algorithm
to
enhance spatial resolution
of hyperspectral remote sensing imagery. According
to
the characteristics of Earth Observing-l
(EO-l)
Hyperion hyperspectral
imagery and Advanced Land Imager (ALI) panchromatic imagery
, 4 kinds of fusion algorithms were selected
to
c
缸
TY
out a
comparative study of the image fusion effect for the city and mountain regions
from
9 kinds of remote sensing image fusion
algorithms
, namely Gram-Schmidt spectral sharpening fusion method, transform fusion method of Smoothing Filter-based
Intensity Modulation ( SFIM)
, Weighted Average Method
(W
AM)
fusion method and Wavelet Transformation
(WT)
fusion
method. And it carried out the comprehensive evaluation and analysis of the image fusion effect
from
3 aspects of qualitative,
quantitative and classification precision, which aims
to
determine the best fusion method for EO- 1 hyperspectral
imagerγand
panchromatic imagery. The experimental results show that:
1)
from the image fusion effect, Gram-Schmidt spectral sharpening
fusion method is the best in 4 kinds of fusion methods used; 2) from the image classification effect
, the classification results
based on the fusion image is better than the classification results based on the source image. The theoretical analysis and
experimental results show that Gram-Schmidt spectral sharpening fusion method is an ideal fusion algorithm for hyperspectral
imagery and high spatial resolution imagery
, and it can provide powerful support
to
improve the clarity of hyperspectral remote
sensing imagery
, the reliability and the accuracy of the image object recognition and classification
Key
words:
hyperspectral imagery; data fusion; comprehensive evaluation; Earth Observing-l
(EO-l)
0
引言
对于一套光学遥感器系统而言,图像的空间分辨率与光
谱分辨率是一对矛盾,在给定信噪比的条件下,为求得较高的
光谱分辨率(窄光谱波段)往往意味着要付出低空间分辨率
收稿日期
:2014-03-03
;修回日期
:2014-04-14
。
的代价
[IJ
。相对于较高空间分辨率的多光谱图像而言,当前
高光谱遥感图像的空间分辨率还都不够高,尤其是航天高光
谱遥感数据。为解决这一矛盾,已经(或即将)发射的搭载成
像光谱仪的航天遥感平台往往都会带有一个高空间分辨率的
全色通道传感器。例如,地球观测
1
号
(Earth
Observing- 1 ,
基金项目:国家社会科学基金资助项目(
03
BTJ004
)
;福建省自然科学基金资助项目
(2011101265
)。
作者简介:林志垒(1
976
- )
,女,福建长乐人,副教授,博士,主要研究方向:遥感与地理信息系统,
晏路明(1
951
- )
,男,湖南浏阳人,教
授,博士生导师,主要研究方向.自然地理、系统工程、地理信息系统应用。