基于F-P标准具的微小角度测量系统与实验研究

版权申诉
0 下载量 113 浏览量 更新于2024-06-19 收藏 6.03MB PDF 举报
"这篇毕业论文主要探讨了微小角度测量系统的设计与实验研究,采用法布里-珀罗(F-P)标准具为基础的微小角度测量方法。论文详细介绍了F-P标准具的多光束干涉成像原理,以及如何通过虚拟像元平滑细分技术和数理统计方法来计算角度变化。作者完成了测量系统的硬件选择和数据处理流程,并利用C#与Matlab混合编程实现了自动化计算。实验部分涉及不同间隔的F-P标准具,展示了在一定测量范围内高精度的微小角度测量能力。此外,论文还关注了焦距和圆心坐标测量的重复性,以评估测量值的准确度。关键词包括微小角度测量、F-P标准具、混合编程和不确定度分析。" 在该篇毕业论文中,作者首先阐述了微小角度测量技术的重要性,指出我国在这方面与国际先进水平存在差距。论文的核心在于提出了一种基于F-P标准具的微小角度测量方案。F-P标准具利用其多光束干涉特性,能够捕捉到微小的角度变化。通过分析同心干涉圆环的圆心位移量和物镜焦距,可以精确测量反射镜的微小偏转角度。 论文的第二部分详细讨论了测量系统的构建,包括实验装置的选择和数据处理的方法。这里,作者采用了C#和Matlab的混合编程技术,实现数据处理自动化,确保了高精度的圆心坐标和焦距测量。此外,还开发了专门的程序用于F-P标准具间隔测量,以实现自我校准功能,进一步提升了测量的准确性。 实验部分,作者搭建了相应的实验平台,测试了间隔分别为2mm、3mm和5mm的F-P标准具。实验结果显示,在600秒(')的测量范围内,扩展不确定度小于0.13秒('),体现了系统的高精度。同时,通过对焦距和圆心坐标进行重复性实验,得出了它们的标准差,进一步验证了测量系统在微小角度测量值上的稳定性。 这篇论文深入研究了微小角度测量技术,通过F-P标准具和混合编程手段,提供了一个高效且精确的测量解决方案,对于提升我国在微小角度测量领域的技术水平具有重要意义。

class SVDRecommender: def __init__(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if self.which == 'LM': largest = True elif self.which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if self.k <= 0 or self.k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) #获得隐式定义的格拉米矩阵的低秩近似。 eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv, which=self.which, v0=self.v0) #格拉米矩阵有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复数检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #获得一个指示哪些本征对不是简并微小的掩码, #并为阈值奇异值创建一个重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = self.k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not self.return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh def _augmented_orthonormal_cols(U, n): if U.shape[0] <= n: return U Q, R = np.linalg.qr(U) return Q[:, :n] def _augmented_orthonormal_rows(V, n): if V.shape[1] <= n: return V Q, R = np.linalg.qr(V.T) return Q[:, :n].T def _herm(x): return np.conjugate(x.T) 将上述代码修改为使用LM,迭代器使用arpack

2023-06-08 上传

class svd_recommender_py(): #svd矩阵推荐 def svds(A, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. #获得隐式定义的格拉米矩阵的低秩近似。 #这不是解决问题的稳定方法。 solver == 'arpack' eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) #格拉米矩阵具有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复杂检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #得到一个指示哪些本征对不是退化微小的掩码, #并创建阈值奇异值的重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh这段代码主要是为了将scipy包中的SVD计算方法封装成一个自定义类,是否封装合适?如果不合适,给出修改后的完整代码

2023-06-07 上传