基于多普勒效应的单声源速率测定算法与应用
需积分: 11 125 浏览量
更新于2024-08-12
收藏 266KB PDF 举报
"基于多普勒效应的单声源速率测定算法研究 (2007年)"
这篇论文探讨了一种利用多普勒效应原理来测定固定频率、匀速运动单声源速率的方法。多普勒效应是物理学中的一个重要概念,当声源或接收器相对于彼此移动时,接收到的频率会发生变化,这种变化可以用来推算出物体的运动速度。在本文中,研究人员通过MATLAB进行了实验模拟,他们处理了固定传感器接收到的由运动声源产生的声音信号。
首先,研究人员运用Hilbert变换对信号进行分析,这是一种数学工具,能够将实值信号转化为复值信号,从而得到信号的瞬时频率。在多普勒效应的应用中,瞬时频率的变化直接反映了声源的运动状态。接着,他们以离散时间域的多普勒效应作为目标函数,采用非线性最小二乘拟合技术来估计声源的运动速率。这种方法的优点在于可以处理非线性的关系,提高估算的精度。
为了进一步提升算法的性能,论文中还引入了小波分析和经验模态分解(EMD)这两种信号处理技术。小波分析能够对信号进行多尺度分析,有效地分离出信号的不同频率成分,去除噪声。而EMD是一种自适应的数据分析方法,能将复杂信号分解为一系列简单的固有模态函数(IMFs),同样有助于噪声的消除。通过这两种方法,原始声音信号和瞬时频率的纯净度得以提高,从而提高了速率测定的准确性。
实验结果显示,该算法具有较高的精度,证明了这种方法在实际应用中的可行性。这为声源追踪、移动物体检测以及相关领域提供了新的思路和技术支持。论文中还可能涵盖了数据处理的详细步骤、误差分析以及与其他传统方法的比较等内容,但具体的细节没有在此摘要中给出。
关键词涉及了几个关键概念:Hilbert变换用于获取瞬时频率,经验模态分解(EMD)和小波分析作为信号去噪手段,以及非线性最小二乘法用于速率估计。这些关键词揭示了论文的主要研究工具和技术。
这篇论文发表于2007年的《重庆邮电大学学报 自然科学版》,属于自然科学领域的学术论文,对相关领域的研究者和技术开发者具有重要的参考价值。通过深入理解并应用文中提出的算法,有可能改进现有的声源跟踪技术和速率测量方法,特别是在交通监控、航空航天以及遥感等领域。
2019-08-18 上传
2019-10-10 上传
2021-03-16 上传
2022-10-15 上传
2021-09-15 上传
2021-02-08 上传
2021-03-17 上传
weixin_38596117
- 粉丝: 12
- 资源: 913
最新资源
- Android圆角进度条控件的设计与应用
- mui框架实现带侧边栏的响应式布局
- Android仿知乎横线直线进度条实现教程
- SSM选课系统实现:Spring+SpringMVC+MyBatis源码剖析
- 使用JavaScript开发的流星待办事项应用
- Google Code Jam 2015竞赛回顾与Java编程实践
- Angular 2与NW.js集成:通过Webpack和Gulp构建环境详解
- OneDayTripPlanner:数字化城市旅游活动规划助手
- TinySTM 轻量级原子操作库的详细介绍与安装指南
- 模拟PHP序列化:JavaScript实现序列化与反序列化技术
- ***进销存系统全面功能介绍与开发指南
- 掌握Clojure命名空间的正确重新加载技巧
- 免费获取VMD模态分解Matlab源代码与案例数据
- BuglyEasyToUnity最新更新优化:简化Unity开发者接入流程
- Android学生俱乐部项目任务2解析与实践
- 掌握Elixir语言构建高效分布式网络爬虫