Python生物信息学算法:设计与实现

需积分: 10 14 下载量 30 浏览量 更新于2024-07-15 1 收藏 6.7MB PDF 举报
"Bioinformatics Algorithms.Design and Implementation in Python" 是一本由Miguel Rocha和Pedro G. Ferreira合著的专业书籍,该书详细介绍了如何在Python编程环境中设计和实现生物信息学算法。作者分别来自葡萄牙的University of Minho和Ipatimup/i3S。本书由学术出版社Elsevier出版。 生物信息学是一门结合生物学、计算机科学和统计学的交叉学科,主要处理生命科学中的大数据问题,尤其是在基因组学、蛋白质组学和分子生物学等领域。这本书针对的读者可能是生物信息学的研究人员、学生或对生物数据处理感兴趣的开发者。 书中涵盖的生物信息学算法可能包括但不限于序列比对、基因预测、进化树构建、聚类分析、蛋白质结构预测、转录因子结合位点识别等核心概念。Python作为一种流行的编程语言,因其简洁易读的语法和丰富的科学计算库(如NumPy、Pandas、SciPy和Biopython等),成为生物信息学研究中的首选工具。 通过阅读本书,读者可以学习到如何利用Python实现以下内容: 1. 序列分析:学习如何处理DNA、RNA和蛋白质序列,进行基本的序列操作,如查找子串、计算相似度和构建序列数据库。 2. 序列比对:理解Smith-Waterman和Needleman-Wunsch算法,用于局部和全局比对,以及如何优化这些算法以提高效率。 3. 聚类和分类:掌握基于距离的聚类方法,如UPGMA和NJ树,以及基于模型的分类方法,如贝叶斯分类。 4. 遗传编码与翻译:理解遗传密码,实现从DNA到蛋白质的翻译过程。 5. 进化树构建:了解最大似然法和邻接法,以及如何用Python实现它们来构建生物物种的进化关系图谱。 6. 预测结构与功能:学习蛋白质结构预测技术,如二级结构预测和折叠识别,以及如何预测蛋白质的功能区域。 7. 数据可视化:利用Python库(如Matplotlib和Seaborn)创建生物数据的可视化图表,帮助理解和解释结果。 此外,本书还可能涵盖了如何处理大规模数据集、并行计算和云计算在生物信息学中的应用,以及如何使用Python与其他生物信息学工具和数据库进行交互。 《Bioinformatics Algorithms.Design and Implementation in Python》是一本全面介绍生物信息学算法的实践指南,通过深入浅出的讲解和实例代码,帮助读者掌握这个领域的核心技术和方法,进一步推动生命科学的研究和发展。

精简下面表达:Existing protein function prediction methods integrate PPI networks and multivariate bioinformatics data to improve the performance of function prediction. By combining multivariate information, the interactions between proteins become diverse. Different interactions’ functions in functional prediction are various. Combining multiple interactions simply between two proteins can effectively reduce the effect of false negatives and increase the number of predicted functions, but it can also increase the number of false positive functions, which contribute to nonobvious enhancement for the overall functional prediction performance. In this article, we have presented a framework for protein function prediction algorithms based on PPI network and semantic similarity with the addition of protein hierarchical functions to them. The framework relies on diverse clustering algorithms and the calculation of protein semantic similarity for protein function prediction. Classification and similarity calculations for protein pairs clustered by the functional feature are more accurate and reliable, allowing for the prediction of protein function at different functional levels from different proteomes, and giving biological applications greater flexibility.The method proposed in this paper performs well on protein data from wine yeast cells, but how well it matches other data remains to be verified. Yet until now, most unknown proteins have only been able to predict protein function by calculating similarities to their homologues. The predictions result of those unknown proteins without homologues are unstable because they are relatively isolated in the protein interaction network. It is difficult to find one protein with high similarity. In the framework proposed in this article, the number of features selected after clustering and the number of protein features selected for each functional layer has a significant impact on the accuracy of subsequent functional predictions. Therefore, when making feature selection, it is necessary to select as many functional features as possible that are important for the whole interaction network. When an incorrect feature was selected, the prediction results will be somewhat different from the actual function. Thus as a whole, the method proposed in this article has improved the accuracy of protein function prediction based on the PPI network method to a certain extent and reduces the probability of false positive prediction results.

2023-02-27 上传