重心法聚类分析:合并类别的距离计算与实例应用
需积分: 50 92 浏览量
更新于2024-08-20
收藏 1.49MB PPT 举报
重心法递推公式是聚类分析中的一种关键步骤,用于评估和决定样本间的相似性或差异性。在本篇内容中,我们首先回顾了聚类分析的基本概念。聚类分析是一种多元统计方法,旨在对一组样品或指标根据它们在多个观测变量上的表现进行分类,而不预先知道类别。聚类分析的问题类型属于无监督学习,目标是通过计算样本间的相似度来构建分类规则,从而对观测对象进行自动分组。
在具体的实例中,一个关于10位应聘者的智能检验数据被用来展示重心法的应用。应聘者在数学推理、空间想象和语言理解三个方面得分,通过计算不同样本之间的欧氏距离,如1号和2号应聘者间的距离为236,而1号和3号为482,可以看出距离较大的应聘者并未被聚集在同一类,这表明聚类可能是有效的。
聚类分析的核心任务包括选择合适的相似度测度和连接准则。这里提到的是通过计算离差平方和来衡量样品间的差异,如1号和4号之间的离差平方和仅为1,表明两者在各项指标上较为接近。此外,聚类分析还区分了Q型聚类(样品聚类),即基于样品本身的特性进行分类,和R型聚类(变量聚类),关注的是指标之间的相似性。
对于测量尺度的选择,变量被划分为间隔尺度(包括离散和连续数量,如计数和测量值)、比例尺度(存在绝对零点),这些不同的尺度会影响到相似性和距离的计算。在实际应用中,选择适当的测量尺度和相似度函数至关重要,因为它们直接影响到聚类结果的准确性和稳定性。
重心法递推公式在这里可能涉及样本中心点(比如平均值)的计算,作为新类别的代表,用来衡量新类与其他类别的距离。当合并两个类时,新类的重心会结合两部分样本的重心,从而反映出新类与其他已知类别的相对位置。这种迭代过程有助于逐步优化聚类结构,直至达到满意的分类结果。
重心法递推公式在聚类分析中扮演着核心角色,通过不断迭代和调整类别的划分,确保样本间的相似性得到准确量化,从而实现数据的有序组织和有意义的分类。
140 浏览量
2024-10-03 上传
2022-05-02 上传
2022-04-15 上传
2010-06-15 上传
2023-06-29 上传
杜浩明
- 粉丝: 15
- 资源: 2万+
最新资源
- Angular实现MarcHayek简历展示应用教程
- Crossbow Spot最新更新 - 获取Chrome扩展新闻
- 量子管道网络优化与Python实现
- Debian系统中APT缓存维护工具的使用方法与实践
- Python模块AccessControl的Windows64位安装文件介绍
- 掌握最新*** Fisher资讯,使用Google Chrome扩展
- Ember应用程序开发流程与环境配置指南
- EZPCOpenSDK_v5.1.2_build***版本更新详情
- Postcode-Finder:利用JavaScript和Google Geocode API实现
- AWS商业交易监控器:航线行为分析与营销策略制定
- AccessControl-4.0b6压缩包详细使用教程
- Python编程实践与技巧汇总
- 使用Sikuli和Python打造颜色求解器项目
- .Net基础视频教程:掌握GDI绘图技术
- 深入理解数据结构与JavaScript实践项目
- 双子座在线裁判系统:提高编程竞赛效率