稀疏矩阵的行逻辑链接顺序表与压缩存储

需积分: 50 0 下载量 80 浏览量 更新于2024-07-14 收藏 1.87MB PPT 举报
"行逻辑链接的顺序表是稀疏矩阵的一种存储结构,它结合了快速转置算法中的行信息辅助数组cpos,用于方便地存取稀疏矩阵中任意一行的非0元素。这种结构在三元组表的基础上增加了行链接信息,便于随机访问。课程内容涵盖数组的定义、顺序存储、压缩存储、广义表的定义和存储结构,以及重点难点如数组类型的定义和存储位置计算。" 正文: 在计算机科学中,数据结构是程序设计的基础,而数组作为一种基本的数据结构,具有重要的地位。数组是按特定格式排列的一系列具有相同属性的项目,可以是一维、二维或多维。例如,一维数组A[5]包含5个元素,而二维数组A[5][5]则表示一个5x5的矩阵,每个元素在两个维度上有下标。 数组的顺序存储是将数组元素按照线性的顺序放在内存中,使得元素可以通过其下标快速访问。在以行为主的存储表示中,数组元素的地址可以通过下标计算得出,这是基于内存地址连续性的假设。例如,在一维数组中,第i个元素的地址通常是首元素地址加上i乘以元素大小。 当处理特殊矩阵,如稀疏矩阵时,顺序存储可能不那么高效,因为大部分元素可能是0。在这种情况下,可以采用压缩存储,比如三元组表,只存储非0元素。三元组表由每行的行号、列号和对应的值组成,节省了大量空间。而在行逻辑链接的顺序表中,为了支持随机访问任意一行的非0元素,引入了行链接信息。这意味着,每个三元组不仅包含自身的行号和列号,还记录了该行第一个非0元素的索引,这样可以迅速定位到特定行的起始位置。 数组的存储位置计算是数据结构课程中的重点和难点之一,它涉及到内存地址和下标的转换。对于二维数组,元素的地址通常等于首元素地址加上行下标乘以列数再加列下标。在压缩存储的广义表中,存储结构可能会更复杂,例如链表或者树形结构,这需要对数据结构有深入的理解。 广义表是一种能够表示多种数据结构的抽象数据类型,它可以包含子表,形成嵌套结构。广义表的存储结构通常使用链式存储,因为它能灵活地表示子表的不连续性。广义表的定义包括头元素和尾部子表,可以是单链表、双链表或尾递归的形式。 学习目标中提到的掌握特殊矩阵的存储压缩表示方法,不仅包括了解三元组表和行逻辑链接的顺序表,还要理解如何根据矩阵的特性选择合适的压缩策略。此外,理解广义表的结构特点和存储表示方法,有助于设计和实现更复杂的数据结构。 这个课件涵盖了数组、特殊矩阵(如稀疏矩阵)的压缩存储、广义表的定义和存储结构,这些都是数据结构课程中的核心概念。通过学习这些知识点,学生可以提升对数据结构的理解,为后续的算法设计和分析打下坚实基础。