"基于YOLO的目标检测优化算法研究: 发展、实现和应用"
版权申诉
5星 · 超过95%的资源 181 浏览量
更新于2024-04-20
1
收藏 30KB DOCX 举报
Abstract
Object detection is a crucial task in computer vision with various applications, such as autonomous driving, surveillance systems, and image retrieval. The You Only Look Once (YOLO) algorithm has gained popularity due to its real-time processing capabilities and high accuracy. However, there is still room for improvement in terms of detection accuracy and efficiency. This study focuses on optimizing the YOLO algorithm for object detection.
Chapter 1 discusses the importance of object detection and provides an introduction to the YOLO algorithm. The necessity of optimizing object detection is also highlighted in this chapter.
Chapter 2 presents a review of existing object detection algorithms and the evolution of the YOLO algorithm through various improvements.
Chapter 3 delves into the principles of optimizing object detection based on YOLO, including data preparation and annotation, algorithm implementation, and optimization techniques.
Chapter 4 details the experimental setup and compares the results of the optimized algorithm with other existing methods.
Chapter 5 explores the optimization of the algorithm on different datasets and its potential applications in various domains.
In Chapter 6, the study concludes with a summary of the work done and offers insights into future research directions.
Overall, this research aims to enhance the performance of the YOLO algorithm for object detection through optimization techniques. The findings of this study contribute to the advancement of computer vision technology and have potential implications for real-world applications.
2023-05-08 上传
2023-10-23 上传
2018-03-15 上传
2024-06-16 上传
2024-06-03 上传
2024-07-24 上传
2023-09-20 上传
2023-11-01 上传
usp1994
- 粉丝: 5862
- 资源: 1049
最新资源
- 全国江河水系图层shp文件包下载
- 点云二值化测试数据集的详细解读
- JDiskCat:跨平台开源磁盘目录工具
- 加密FS模块:实现动态文件加密的Node.js包
- 宠物小精灵记忆配对游戏:强化你的命名记忆
- React入门教程:创建React应用与脚本使用指南
- Linux和Unix文件标记解决方案:贝岭的matlab代码
- Unity射击游戏UI套件:支持C#与多种屏幕布局
- MapboxGL Draw自定义模式:高效切割多边形方法
- C语言课程设计:计算机程序编辑语言的应用与优势
- 吴恩达课程手写实现Python优化器和网络模型
- PFT_2019项目:ft_printf测试器的新版测试规范
- MySQL数据库备份Shell脚本使用指南
- Ohbug扩展实现屏幕录像功能
- Ember CLI 插件:ember-cli-i18n-lazy-lookup 实现高效国际化
- Wireshark网络调试工具:中文支持的网口发包与分析