TensorFlow实战:机器学习烹饪指南

需积分: 10 8 下载量 31 浏览量 更新于2024-07-19 收藏 4.97MB PDF 举报
"Packt出版的《TensorFlow机器学习实战指南》2017版" 本书专注于介绍并应用TensorFlow这一由Google在2015年开源的机器学习框架。自发布以来,TensorFlow因其计算图的概念、自动微分以及高度可定制性而在GitHub上获得了极高的人气,成为最受欢迎的机器学习库。这本书涵盖了多种机器学习算法,并将其应用于实际场景和数据,旨在帮助读者理解和解读结果。 标签"Machine Learning"表明本书主要关注的是机器学习领域,而TensorFlow正是在这个领域中广泛使用的工具。 书中内容概述: 1. **TensorFlow工作原理**:首先,书中会解释TensorFlow的核心概念,包括如何通过创建计算图来定义复杂的数学运算,以及如何利用自动微分进行模型训练。 2. **声明张量(Tensors)**:在开始时,读者将学习如何声明基本的数据结构,如张量,这些是TensorFlow中的基本单元,可以是标量、向量、矩阵等。 3. **使用占位符和变量**:占位符用于输入数据,变量则用于存储模型参数。这部分将指导读者如何有效地使用这两者来构建和训练模型。 4. **矩阵操作**:书中还涵盖矩阵运算,这对于处理线性代数问题至关重要,特别是在深度学习模型中。 5. **声明操作**:读者将学习如何声明各种操作,这些操作构成了TensorFlow计算图的节点,用于执行从简单的数学运算到复杂的神经网络层的各种任务。 6. **实现激活函数**:激活函数是神经网络的关键组成部分,用于引入非线性。书中会展示如何在TensorFlow中实现常见的激活函数,如sigmoid、ReLU等。 7. **处理数据源**:最后,书中讨论了如何有效地加载和预处理数据,这是机器学习流程中必不可少的步骤。此外,还可能提供额外的资源链接,以便读者了解更多关于数据处理的知识。 《TensorFlow机器学习实战指南》是一本适合初学者和有一定经验的开发者参考的书籍,它通过实践示例深入浅出地介绍了TensorFlow的基本用法和高级特性,帮助读者掌握这个强大的机器学习平台。
2018-03-16 上传
TensorFlow Machine Learning Cookbook by Nick McClure English | 14 Feb. 2017 | ISBN: 1786462168 | 370 Pages Key Features Your quick guide to implementing TensorFlow in your day-to-day machine learning activities Learn advanced techniques that bring more accuracy and speed to machine learning Upgrade your knowledge to the second generation of machine learning with this guide on TensorFlow Book Description TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach yo u how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google's machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production. What you will learn Become familiar with the basics of the TensorFlow machine learning library Get to know Linear Regression techniques with TensorFlow Learn SVMs with hands-on recipes Implement neural networks and improve predictions Apply NLP and sentiment analysis to your data Master CNN and RNN through practical recipes Take TensorFlow into production About the Author Nick McClure is currently a senior data scientist at PayScale, Inc. in Seattle, WA. Prior to this, he has worked at Zillow and Caesar's Entertainment. He got his degrees in Applied Mathematics from The University of Montana and the College of Saint Benedict and Saint John's University. He has a passion for learning and advocating for analytics, machine learning, and artificial intelligence. Nick occasionally puts his thoughts and musings on his blog, http://fromdata.org/, or through his Twitter account, @nfmcclure. Table of Contents Getting Started with TensorFlow The TensorFlow Way Linear Regression Support Vector Machines Nearest Neighbor Methods Neural Networks Natural Language Processing Convolutional Neural Networks Recurrent Neural Networks Taking TensorFlow to Production More with TensorFlow