Yarn架构下基于GA的Web日志挖掘优化技术
需积分: 9 169 浏览量
更新于2024-09-07
收藏 1.07MB PDF 举报
"面向TB级别日志文件的Yarn架构下基于GA的Web日志挖掘技术"
在当前的大数据时代,Web日志挖掘是一项至关重要的任务,它有助于理解用户行为、优化网站性能以及进行数据驱动的决策。这篇论文研究了一种在YARN(Yet Another Resource Negotiator)架构下利用遗传算法(Genetic Algorithm, GA)进行日志挖掘的技术,旨在解决TB级别的日志文件处理需求。
YARN是Apache Hadoop的一个关键组件,它作为大数据处理的资源管理器,将Hadoop MapReduce的功能分解为两个独立的角色:资源调度器和应用程序管理器。通过这种方式,YARN能够更高效地支持多种计算框架,如Spark、Flink等,而不仅仅是MapReduce。论文中的研究工作将GA与YARN架构相结合,利用MapReduce编程模型来设计和实现GA的并行版本,以适应大规模日志挖掘的需求。
遗传算法是一种启发式搜索方法,模仿了生物进化过程中的自然选择和遗传机制,用于求解优化问题。在传统的GA中,种群的分布可能会导致某些个体被频繁选择而其他个体被忽视,影响算法的收敛速度和结果的准确性。为此,论文提出了基于子种群联姻策略的GA,即在Partition阶段采用了Round-Robin策略替代原有的哈希方法。Round-Robin策略确保了子种群基因的均匀分布,使得各子种群的收敛效率得以提高,同时也平衡了在YARN集群中各个节点的负载,从而提升了系统的整体性能。
实验结果显示,应用该技术进行日志挖掘,其挖掘结果的平均准确度达到了93%以上,相比于传统方法,效率提升了近33%。这表明,这种结合了YARN和GA的并行挖掘方法在处理大规模Web日志时,不仅能够保证挖掘质量,还能显著提高处理速度。
此外,该研究得到了国家自然科学基金和黑龙江省多个科研项目的资助,研究团队包括李静梅教授、张宝权和丁楠博士,他们在计算机系统结构、分布式系统以及高性能计算领域有深厚的理论基础和实践经验。
关键词:YARN架构,日志挖掘,遗传算法,并行计算
这篇论文的贡献在于提供了一种创新性的日志挖掘解决方案,它有效地利用了YARN的分布式计算能力,优化了遗传算法的性能,对于处理大规模Web日志数据具有重要的实践价值。这种技术对于大数据分析、网络流量监控、用户行为分析等领域有着广泛的应用前景。
2022-04-07 上传
2022-04-23 上传
2021-06-11 上传
2019-09-08 上传
2020-12-12 上传
2021-06-02 上传
weixin_39840588
- 粉丝: 451
- 资源: 1万+
最新资源
- 前端协作项目:发布猜图游戏功能与待修复事项
- Spring框架REST服务开发实践指南
- ALU课设实现基础与高级运算功能
- 深入了解STK:C++音频信号处理综合工具套件
- 华中科技大学电信学院软件无线电实验资料汇总
- CGSN数据解析与集成验证工具集:Python和Shell脚本
- Java实现的远程视频会议系统开发教程
- Change-OEM: 用Java修改Windows OEM信息与Logo
- cmnd:文本到远程API的桥接平台开发
- 解决BIOS刷写错误28:PRR.exe的应用与效果
- 深度学习对抗攻击库:adversarial_robustness_toolbox 1.10.0
- Win7系统CP2102驱动下载与安装指南
- 深入理解Java中的函数式编程技巧
- GY-906 MLX90614ESF传感器模块温度采集应用资料
- Adversarial Robustness Toolbox 1.15.1 工具包安装教程
- GNU Radio的供应商中立SDR开发包:gr-sdr介绍