复杂流道中层流流动的数值分析:半心脏线、半内摆线与抛物线形

0 下载量 89 浏览量 更新于2024-09-04 收藏 322KB PDF 举报
"复杂明槽流道中充发层流流动的数值计算,葛巧玉,张敏等,通过数值分析解决复杂形状流道内的层流流动速度场分布问题,涉及半心脏线、半内摆线和抛物线三种截面形状。采用非结构化网格的有限容积法和二阶精度插值求解定常流动,验证方法的可靠性和实用性。" 文章深入探讨了复杂明槽流道中层流流动的数值计算方法,这是在理解自然界及工程领域如天然河流、引水渠道、人工运河等明槽流动现象的关键。明槽流动的一个显著特征是存在一个自由水面,受重力而非固体边界约束,导致流动特性的显著差异,比如压强降落在管道流动中,而在明槽流动中表现为水面高度变化。 作者葛巧玉、张敏等人通过数值模拟研究了三种不同几何形状的复杂流道——半心脏线形、半内摆线形和抛物线形的明槽流动。他们利用非结构化网格,结合有限容积法和二阶精度插值方法来求解定常流动问题,这种方法能有效捕捉流场中的速度分布特性。通过对这些特殊形状流道的数值解,他们证实了所采用的数值计算方法的有效性和适用性。 具体到半心脏线形流道,其流动模型在笛卡尔坐标系下由一组偏微分方程(1-1a)和边界条件(1-1b)描述。通过坐标变换(1-2a,1-2b),可以进一步简化问题。在分析明槽流动时,引入了水力半径(1-3)这一概念,它对于理解和预测流动特性至关重要。 文章的数值计算区域使用了非结构化网格,这允许更灵活地适应流道的复杂几何形状,并能提供更精确的解决方案。虽然具体的网格数量未给出,但可以推断出,为了保证计算的精度,网格的数量应该是相当大的。 这篇论文提供了对复杂明槽流道层流流动数值模拟的深入见解,不仅展示了理论方法的实用性,也为未来相关领域的工程设计和流动预测提供了有价值的工具和参考。