8
CHAPTER 1. BASIC AC THEORY
Mathematically, the rate of magnetic flux change due to a rotating magnet follows that of a
sine function, so the voltage produced by the coils follows that same function.
If we were to follow the changing voltage produced by a coil in an alternator from any
point on the sine wave graph to that point when the wave shape begins to repeat itself, we
would have marked exactly one cycle of that wave. This is most easily shown by spanning the
distance between identical peaks, but may be measured between any corresponding points on
the graph. The degree marks on the horizontal axis of the graph represent the domain of the
trigonometric sine function, and also the angular position of our s imple two-pole alternator
shaft as it rotates: Figure
1.9
one wave cycle
Alternator shaft
position (degrees)
0 90 180 270 360
(0)
90 180 270 360
(0)
one wave cycle
Figure 1.9:
Alternator voltage as function of shaft position ( time).
Since the horizontal axis of this graph can mark the passage of time as well as shaft position
in degrees, the dimension marked for one cycle is often measured in a unit of time, most often
seconds or fractions of a second. When expressed as a measurement, this is often called the
period of a wave. The period of a wave in degrees is always 360, but the amount of time one
period occupies depends on the rate voltage oscillates back and forth.
A more popular measure for describing the alternating rate of an AC voltage or current
wave than period is the rate of that back-and-forth oscillation. This is called frequency. The
modern unit for frequency is the Hertz (abbreviated Hz), which represents the number of wave
cycles completed during one second of time. In the United States of America, the standard
power-line frequency is 60 Hz, meaning that the AC voltage oscillates at a rate of 60 complete
back-and-forth cycles every second. In Europe, where the power system frequency is 50 Hz,
the AC voltage only completes 50 cycles every second. A radio station transmitter broadcasting
at a frequency of 100 MHz generates an AC voltage oscillating at a rate of 100 million cycles
every second.
Prior to the canonization of the Hertz unit, frequency was simply expressed as “cycles per
second.” Older meters and electronic equipment often bore frequency units of “CPS” (Cycles
Per Second) instead of Hz. Many people believe the change from self-explanatory units like
CPS to Hertz constitutes a step backward in clarity. A similar change occurred when the unit
of “Celsius” replaced that of “Centigrade” for metric temperature measurement. The name
Centigrade was based on a 100-count (“Centi-”) scale (“-grade”) representing the melting and
boiling points of H
2
O, respectively. The name Celsius, on the other hand, gives no hint as to
the unit’s origin or meaning.