深度优先搜索与广度优先搜索在图遍历的应用
需积分: 9 135 浏览量
更新于2024-09-18
收藏 97KB DOC 举报
"本文主要介绍了图的两种遍历方法——深度优先搜索(DFS)和广度优先搜索(BFS),并提供了相应的C语言实现代码。深度优先搜索通过递归访问图中的邻接顶点,而广度优先搜索则利用队列进行层次遍历。"
在图论中,遍历是一种重要的算法,用于访问图中所有顶点。图的遍历通常分为深度优先搜索(Depth First Search, DFS)和广度优先搜索(Breadth First Search, BFS)。
1. **深度优先搜索(DFS)**
深度优先搜索是一种用于遍历或搜索树或图的算法。这个算法会尽可能深地搜索图的分支。当节点v的所在边都已被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。
在提供的代码中,`DFSTraverse` 函数实现了深度优先遍历。它首先初始化访问标志数组`visited`,然后对每个未访问过的顶点调用`DFS`函数进行递归遍历。`DFS`函数使用一个函数指针`VisitFunc`,允许用户自定义访问每个顶点时的操作。
2. **广度优先搜索(BFS)**
广度优先搜索是从根节点开始,并依次访问其所有相邻节点,然后再访问这些相邻节点的相邻节点,以此类推,直到访问完所有节点。BFS 使用队列来保存待访问的节点,确保先访问距离起点近的节点。
`BFSTraverse` 函数实现了广度优先遍历。同样初始化访问标志数组,然后创建一个辅助队列`Q`。对于每个未访问过的顶点,将其标记为已访问,加入队列,然后不断从队列头部取出顶点,访问其未访问过的邻接顶点并加入队列,直到队列为空。
这两种遍历方法在不同的场景下有各自的优缺点。DFS适合寻找最短路径(如拓扑排序),而BFS则常用于查找最小生成树、最近公共祖先等问题。在实际应用中,选择哪种遍历方法取决于具体问题的需求。
在给定的代码中,`TRUE` 和 `FALSE` 定义了布尔值,`OK` 和 `ERROR` 表示操作结果,`NULL` 表示空指针,`MAX_VExR_NUM` 定义了最大顶点数,`QueueSize` 为队列的大小。`Boolean` 枚举类型用于表示邻接矩阵存储表示中的邻接关系。
总结起来,本文提供的是关于图的深度优先遍历和广度优先遍历的理论介绍及C语言实现,帮助读者理解这两种图遍历算法的原理和代码实现。
2010-11-23 上传
2021-10-14 上传
2009-06-27 上传
2021-06-21 上传
2008-12-23 上传
2023-06-09 上传
2023-05-31 上传
caobo963
- 粉丝: 0
- 资源: 2
最新资源
- 构建基于Django和Stripe的SaaS应用教程
- Symfony2框架打造的RESTful问答系统icare-server
- 蓝桥杯Python试题解析与答案题库
- Go语言实现NWA到WAV文件格式转换工具
- 基于Django的医患管理系统应用
- Jenkins工作流插件开发指南:支持Workflow Python模块
- Java红酒网站项目源码解析与系统开源介绍
- Underworld Exporter资产定义文件详解
- Java版Crash Bandicoot资源库:逆向工程与源码分享
- Spring Boot Starter 自动IP计数功能实现指南
- 我的世界牛顿物理学模组深入解析
- STM32单片机工程创建详解与模板应用
- GDG堪萨斯城代码实验室:离子与火力基地示例应用
- Android Capstone项目:实现Potlatch服务器与OAuth2.0认证
- Cbit类:简化计算封装与异步任务处理
- Java8兼容的FullContact API Java客户端库介绍