奇异值分解与均匀设计采样在半不变量法概率潮流计算中的应用
183 浏览量
更新于2024-08-30
收藏 2.01MB PDF 举报
"奇异值分解结合均匀设计采样的半不变量法概率潮流计算"
本文主要讨论的是在电力系统中,如何解决概率潮流(Probability Load Flow, PLF)计算中遇到的输入变量相关系数矩阵非正定的问题。传统的半不变量法(Canonical Moment, CM)在处理相关性时可能会遇到困难,因为其通常依赖于Cholesky分解,而Cholesky分解仅适用于正定矩阵。针对这一问题,作者提出了一种结合奇异值分解(Singular Value Decomposition, SVD)和均匀设计采样(Uniform Design Sampling, UDS)的新方法来执行PLF-CM计算。
在该方法中,首先利用SVD处理输入变量的协方差矩阵,这使得即使面对非正定矩阵,也能进行有效的计算。接着,通过SVD和UDS结合Nataf变换,生成考虑了相关性的随机变量样本。这些样本用于计算那些常规数值方法难以求解的输入变量的半不变量。半不变量法是将复杂的非线性问题转化为线性问题的一种手段,通过这种方法可以更准确地计算输出变量的半不变量。
然后,采用Cornish-Fisher级数展开进一步求解输出变量的概率分布。Cornish-Fisher级数展开是一种扩展标准正态分布的方法,能更好地描述实际中的非正态分布,尤其是在处理具有多峰或偏斜分布的随机变量时。
通过在改造后的IEEE 14节点测试系统上进行案例研究,证明了所提方法的快速性、有效性以及对高渗透率新能源发电场景的适应性。这种方法的提出对于应对现代电力系统中大量可再生能源并网带来的随机性和不确定性具有重要意义,能够提供更为准确的系统运行风险评估。
关键词涵盖电力系统、概率潮流分析、半不变量法、奇异值分解以及均匀设计采样,表明该文重点在于利用这些数学工具改进电力系统概率潮流的计算效率和准确性。文章还得到了广东省自然科学基金的支持,展示了其在学术和实际应用中的价值。
2022-09-23 上传
2021-09-29 上传
2021-01-12 上传
2022-09-24 上传
2023-10-05 上传
2022-09-21 上传
2022-11-18 上传
weixin_38590790
- 粉丝: 4
- 资源: 940
最新资源
- 俄罗斯RTSD数据集实现交通标志实时检测
- 易语言开发的文件批量改名工具使用Ex_Dui美化界面
- 爱心援助动态网页教程:前端开发实战指南
- 复旦微电子数字电路课件4章同步时序电路详解
- Dylan Manley的编程投资组合登录页面设计介绍
- Python实现H3K4me3与H3K27ac表观遗传标记域长度分析
- 易语言开源播放器项目:简易界面与强大的音频支持
- 介绍rxtx2.2全系统环境下的Java版本使用
- ZStack-CC2530 半开源协议栈使用与安装指南
- 易语言实现的八斗平台与淘宝评论采集软件开发
- Christiano响应式网站项目设计与技术特点
- QT图形框架中QGraphicRectItem的插入与缩放技术
- 组合逻辑电路深入解析与习题教程
- Vue+ECharts实现中国地图3D展示与交互功能
- MiSTer_MAME_SCRIPTS:自动下载MAME与HBMAME脚本指南
- 前端技术精髓:构建响应式盆栽展示网站