业务型数据仓库EDW构建与实战解析
需积分: 50 40 浏览量
更新于2024-07-16
收藏 4.55MB PDF 举报
"构建业务型数据仓库EDW(内部资料,禁止外传).pdf" 是一份关于构建业务型数据仓库EDW的专业资料,由资深人士提供,并包含企业应用案例。资料中提到了数据仓库的不同类型,如业务型和流量型,并引用了数仓领域的经典著作。此外,还介绍了数据仓库的基本定义和两大流派,即Bill Inmon的范式建模和Ralph Kimball的维度建模。
在构建业务型数据仓库EDW时,理解数据仓库的核心概念至关重要。数据仓库是一个设计用于支持管理决策的系统,它具有四个主要特征:面向主题、集成、相对稳定和反映历史变化。面向主题意味着数据仓库是围绕业务的关键领域或主题组织的,例如销售、客户或产品。集成性确保来自不同源的数据被整合到一个一致的视图中。数据的相对稳定性意味着一旦加载到仓库中,数据一般不会被修改,而时间变化性则表明数据仓库记录了数据随时间的变化。
数据仓库领域存在两种主要的建模方法,分别由Bill Inmon和Ralph Kimball提出。Bill Inmon倡导的"战略"范式建模,也称为自上而下的方法,强调先进行企业级的数据模型设计,然后构建数据仓库。这种方法通常采用关系数据库的规范化理论,如E-R模型。相反,Ralph Kimball提出的"战术"维度建模,是一种自下而上的方法,侧重于易于理解和使用的星形或雪花型模型,常用于数据仓库的前端报表和分析。
资料中还提及了互联网金融作为业务型数据仓库的例子,而电商可能更适合流量型数据仓库,这表明不同类型的数据仓库服务于不同的业务需求。此外,资料推荐了几本数据仓库和大数据实践的经典书籍,包括《数据仓库工具箱》、《大数据之路:阿里巴巴大数据实践》和《数据仓库》,这些都是深入理解数据仓库领域的宝贵资源。
大规模并行处理(MPP)平台的提及,暗示在构建大型数据仓库时,可能会使用这样的技术来处理海量数据和提高查询性能。MPP系统允许数据在多台服务器上并行处理,显著提升了数据仓库的处理能力。
构建业务型数据仓库EDW涉及对业务需求的深入理解,选择合适的建模方法,以及利用适合的技术平台来支持高效的数据存储和分析。这一过程旨在为企业决策者提供准确、及时的信息,促进企业的战略规划和运营优化。
2024-11-08 上传
2024-11-08 上传
2024-11-08 上传
2023-07-13 上传
2023-09-04 上传
2023-05-27 上传
User0000000000001
- 粉丝: 4
- 资源: 26
最新资源
- R语言中workflows包的建模工作流程解析
- Vue统计工具项目配置与开发指南
- 基于Spearman相关性的协同过滤推荐引擎分析
- Git基础教程:掌握版本控制精髓
- RISCBoy: 探索开源便携游戏机的设计与实现
- iOS截图功能案例:TKImageView源码分析
- knowhow-shell: 基于脚本自动化作业的完整tty解释器
- 2011版Flash幻灯片管理系统:多格式图片支持
- Khuli-Hawa计划:城市空气质量与噪音水平记录
- D3-charts:轻松定制笛卡尔图表与动态更新功能
- 红酒品质数据集深度分析与应用
- BlueUtils: 经典蓝牙操作全流程封装库的介绍
- Typeout:简化文本到HTML的转换工具介绍与使用
- LeetCode动态规划面试题494解法精讲
- Android开发中RxJava与Retrofit的网络请求封装实践
- React-Webpack沙箱环境搭建与配置指南