Spark 2.0 for Data Science:深入机器学习与基础架构解析
需积分: 9 77 浏览量
更新于2024-07-19
收藏 13MB PDF 举报
"Spark for Data Science 是一本专注于介绍如何利用Spark进行数据科学分析的书籍,涵盖了Spark的基本架构、核心概念,并重点讲述了Spark在机器学习领域的应用,适用于最新版本Spark 2.0。本书由Srinivas Duvvuri和Bikramaditya Singhal合著,由Packt Publishing出版。"
在大数据领域,Apache Spark已经成为处理大规模数据集的首选工具,尤其在数据科学和机器学习中。Spark的核心优势在于其内存计算能力,它允许数据在内存中快速处理,极大地提高了数据处理的速度,相比传统的Hadoop MapReduce模型,Spark能提供高达100倍的性能提升。
Spark的基本架构包括以下几个主要组件:
1. **Spark Core**:这是Spark的基础,提供了分布式任务调度、内存管理以及错误恢复等功能。
2. **Spark SQL**:整合了SQL查询与DataFrame API,使得用户可以用SQL或者DataFrame API对结构化数据进行操作。
3. **Spark Streaming**:用于处理实时数据流,通过微批处理的方式实现了低延迟的数据处理。
4. **MLlib**:Spark的机器学习库,包含多种机器学习算法,如分类、回归、聚类、协同过滤等,以及模型评估和特征选择工具。
5. **GraphX**:用于处理图形数据和图计算,支持图形分析和算法。
在数据科学中,Spark的应用主要体现在以下几个方面:
1. **数据预处理**:Spark可以方便地进行数据清洗、转换和归一化,为后续的建模工作做好准备。
2. **模型训练**:MLlib提供了多种机器学习模型,如线性回归、逻辑回归、决策树、随机森林、梯度提升机等,可以快速训练大规模数据集。
3. **模型验证和调优**:Spark支持交叉验证和网格搜索,帮助选择最佳模型参数。
4. **预测和部署**:训练好的模型可以应用于新数据,进行预测,并可以通过Spark Serving或其他方式部署到生产环境。
本书《Spark for Data Science》将深入讲解Spark的相关技术,并通过实例演示如何使用Spark进行数据分析和机器学习项目。作者们将分享他们在Spark实践中的经验和技巧,帮助读者理解Spark的工作原理,提升数据分析效率。
尽管书中尽力保证信息的准确性,但请注意,由于技术的快速发展,某些信息可能已发生变化。在实际应用中,读者应根据最新的官方文档和社区资源来获取最准确的信息。此外,使用任何技术和工具时,都应注意潜在的风险和责任,确保符合法律法规,尊重数据隐私。
2017-09-29 上传
2017-09-29 上传
2023-08-31 上传
2022-09-20 上传
2023-08-30 上传
2018-11-02 上传
2016-10-09 上传
2021-04-29 上传
china1024k
- 粉丝: 1
- 资源: 6
最新资源
- SpringCucumber:带有Cucumber、maven 和 tomcat 的 Spring REST 应用程序的 BDD
- TUCaN't - passt TUCaN den wahren Umständen an-crx插件
- xiaoxingxingpengzhuang,c#微商城源码,c#
- 报警发声_单片机C语言实例(纯C语言源代码).zip
- OriginalAche.ajkt8j4ngr.gaE4FWe
- GoTests:试用Go
- summitsingh.github.io
- gajian:基于项目的公司支付系统
- Supply,c#im源码,c#
- 8位LED右移_单片机C语言实例(纯C语言源代码).zip
- RUNDLL32使用方法和模块、参数调用大全
- 嵌入式Visual C ++的项目向导
- 带火炬的卷积神经网络:卷积神经网络预测Minipong对象
- oduzugusse
- Python库 | markdown-blockdiag-0.6.1.tar.gz
- 漂亮的金色农业农场响应式企业网站模板5417_网站开发模板含源代码(css+html+js+图样).zip