Spark 2.0 for Data Science:深入机器学习与基础架构解析
需积分: 9 153 浏览量
更新于2024-07-19
收藏 13MB PDF 举报
"Spark for Data Science 是一本专注于介绍如何利用Spark进行数据科学分析的书籍,涵盖了Spark的基本架构、核心概念,并重点讲述了Spark在机器学习领域的应用,适用于最新版本Spark 2.0。本书由Srinivas Duvvuri和Bikramaditya Singhal合著,由Packt Publishing出版。"
在大数据领域,Apache Spark已经成为处理大规模数据集的首选工具,尤其在数据科学和机器学习中。Spark的核心优势在于其内存计算能力,它允许数据在内存中快速处理,极大地提高了数据处理的速度,相比传统的Hadoop MapReduce模型,Spark能提供高达100倍的性能提升。
Spark的基本架构包括以下几个主要组件:
1. **Spark Core**:这是Spark的基础,提供了分布式任务调度、内存管理以及错误恢复等功能。
2. **Spark SQL**:整合了SQL查询与DataFrame API,使得用户可以用SQL或者DataFrame API对结构化数据进行操作。
3. **Spark Streaming**:用于处理实时数据流,通过微批处理的方式实现了低延迟的数据处理。
4. **MLlib**:Spark的机器学习库,包含多种机器学习算法,如分类、回归、聚类、协同过滤等,以及模型评估和特征选择工具。
5. **GraphX**:用于处理图形数据和图计算,支持图形分析和算法。
在数据科学中,Spark的应用主要体现在以下几个方面:
1. **数据预处理**:Spark可以方便地进行数据清洗、转换和归一化,为后续的建模工作做好准备。
2. **模型训练**:MLlib提供了多种机器学习模型,如线性回归、逻辑回归、决策树、随机森林、梯度提升机等,可以快速训练大规模数据集。
3. **模型验证和调优**:Spark支持交叉验证和网格搜索,帮助选择最佳模型参数。
4. **预测和部署**:训练好的模型可以应用于新数据,进行预测,并可以通过Spark Serving或其他方式部署到生产环境。
本书《Spark for Data Science》将深入讲解Spark的相关技术,并通过实例演示如何使用Spark进行数据分析和机器学习项目。作者们将分享他们在Spark实践中的经验和技巧,帮助读者理解Spark的工作原理,提升数据分析效率。
尽管书中尽力保证信息的准确性,但请注意,由于技术的快速发展,某些信息可能已发生变化。在实际应用中,读者应根据最新的官方文档和社区资源来获取最准确的信息。此外,使用任何技术和工具时,都应注意潜在的风险和责任,确保符合法律法规,尊重数据隐私。
2017-09-29 上传
2017-09-29 上传
2023-08-31 上传
2022-09-20 上传
2023-08-30 上传
2018-11-02 上传
2016-10-09 上传
2021-04-29 上传
china1024k
- 粉丝: 1
- 资源: 6
最新资源
- 平尾装配工作平台运输支撑系统设计与应用
- MAX-MIN Ant System:用MATLAB解决旅行商问题
- Flutter状态管理新秀:sealed_flutter_bloc包整合seal_unions
- Pong²开源游戏:双人对战图形化的经典竞技体验
- jQuery spriteAnimator插件:创建精灵动画的利器
- 广播媒体对象传输方法与设备的技术分析
- MATLAB HDF5数据提取工具:深层结构化数据处理
- 适用于arm64的Valgrind交叉编译包发布
- 基于canvas和Java后端的小程序“飞翔的小鸟”完整示例
- 全面升级STM32F7 Discovery LCD BSP驱动程序
- React Router v4 入门教程与示例代码解析
- 下载OpenCV各版本安装包,全面覆盖2.4至4.5
- 手写笔画分割技术的新突破:智能分割方法与装置
- 基于Koplowitz & Bruckstein算法的MATLAB周长估计方法
- Modbus4j-3.0.3版本免费下载指南
- PoqetPresenter:Sharp Zaurus上的开源OpenOffice演示查看器