深度学习入门:基础理论与机器学习

需积分: 15 22 下载量 168 浏览量 更新于2024-07-19 收藏 37.79MB PDF 举报
"机器学习" 这篇资源是关于"机器学习"的,主要涵盖了深度学习的概览和基础数学知识。在描述中,它提及了深度学习的发展历程,包括神经网络的不同阶段、数据量的增长、模型规模的扩大以及精度与复杂度的提升对现实世界的影响。此外,还特别指出该资料是供学习使用的,不能用于商业目的,并引用了《深度学习》一书的中文版链接。 在提供的部分内容中,可以看到书的结构分为两个主要部分:应用数学和机器学习基础。首先,第二章介绍了线性代数的基础概念,包括标量、向量、矩阵、张量以及它们之间的运算,如矩阵乘法、逆矩阵、线性相关性、范数、特征分解、奇异值分解、伪逆等。这些是理解深度学习中神经网络权重操作和优化算法的关键数学工具。 接着,第三章涉及概率论与信息论。讨论了为何使用概率,解释了随机变量、概率分布(包括离散型和连续型)、边缘概率、条件概率、独立性和条件独立性等概念,以及期望、方差和协方差等统计量。这部分内容对于理解机器学习中的概率模型、贝叶斯推断以及深度学习中的不确定性建模至关重要。 通过学习这部分内容,读者将能够建立起深度学习所需的数学基础,理解如何用线性代数处理数据,以及如何用概率论来建模和推断。这为学习更高级的机器学习技术,如神经网络架构、梯度下降优化、卷积神经网络和递归神经网络等奠定了基础。因此,无论是初学者还是希望深入研究的从业者,都能从这份资料中获益。
565 浏览量
Machine Learning Algorithms by Giuseppe Bonaccorso English | 24 July 2017 | ISBN: 1785889621 | ASIN: B072QBG11J | 360 Pages | AZW3 | 12.18 MB Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the
2021-03-13 上传