深入理解Numpy:Python机器学习基础

需积分: 9 0 下载量 25 浏览量 更新于2024-07-17 收藏 66KB DOCX 举报
"Numpy是Python中用于科学计算的核心库,主要特点是高效处理大型多维数组和矩阵。本手册详细介绍了Numpy的使用,包括数组对象`ndarray`的基本概念、属性以及操作方法,适合机器学习和Python编程者参考。" 在Python的科学计算领域,Numpy库扮演着至关重要的角色。其核心数据结构`ndarray`(全称N-dimensional array)是一个高效的多维数组,支持快速的数学运算。Numpy数组与Python内置的列表不同,它能够在内存中存储大量相同类型的数据,这使得对大规模数据的操作变得高效。 `ndarray`的主要属性包括: 1. **秩(rank)**:表示数组的维度数量,即轴的数量。例如,一维数组的秩为1,二维数组的秩为2,以此类推。 2. **形状(shape)**:一个元组,表示各维度的大小。如二维数组的形状`(n, m)`表示有n行m列,三维数组的形状`(a, b, c)`表示有a个b行c列的子数组。 3. **元素数量(size)**:数组中所有元素的总数,等于形状元组中所有元素的乘积。 4. **元素类型(dtype)**:描述数组中每个元素的数据类型,可以是Python的基本类型,如int、float、bool等,也可以是更复杂的自定义类型。 `ndarray`的操作涵盖数组创建、索引、切片、广播、数学运算等多个方面。例如,可以通过`numpy.array()`函数创建数组,通过索引和切片访问数组元素,使用算术运算符执行元素级别的计算。此外,Numpy还提供了一套丰富的函数库,包括统计、线性代数、傅立叶变换等,方便进行科学计算。 对于机器学习而言,Numpy是基础工具,许多库如Pandas、Scikit-learn等都基于Numpy构建。在进行数据预处理、模型训练和评估时,都需要用到Numpy的数组操作。 了解并熟练掌握Numpy的使用,能够极大地提高数据处理的效率和代码的可读性。对于初学者,可以从以下几个方面着手: - 学习如何创建和初始化数组,包括固定形状和动态形状的数组。 - 理解数组的索引和切片机制,以及与Python列表的不同之处。 - 掌握数组的运算规则,包括基本的数学运算和元素级别的操作。 - 学会使用Numpy的函数库,如`numpy.sum()`、`numpy.mean()`等,进行数值计算和数据分析。 - 了解广播机制,这在处理不同形状的数组时非常重要。 通过深入学习和实践,你可以将Numpy运用到各种实际项目中,提升数据处理能力,更好地进行机器学习和数据分析工作。
897 浏览量
说明:本文档所有内容来源于网络 https://www.numpy.org.cn/user/ 目录 1. NUMPY 介绍 1 1.1 什么是 NUMPY? 1 1.2 为什么 NUMPY 这么快? 3 1.3 还有谁在使用 NUMPY? 3 2. 快速入门教程 4 2.1 先决条件 4 2.2 基础知识 4 2.2.1一个例子 5 2.2.2 数组创建 6 2.2.3 打印数组 8 2.2.4 基本操作 10 2.2.5 通函数 13 2.2.6 索引、切片和迭代 14 2.3 形状操纵 18 2.3.1改变数组的形状 18 2.3.2 将不同数组堆叠在一起 20 2.3.3 将一个数组拆分成几个较小的数组 22 2.4 拷贝和视图 23 2.4.1 完全不复制 23 2.4.2 视图或浅拷贝 24 2.4.3 深拷贝 25 2.4.4 功能和方法概述 26 2.5 LESS 基础 26 广播(Broadcasting)规则 27 2.6 花式索引和索引技巧 27 2.6.1使用索引数组进行索引 27 2.6.2使用布尔数组进行索引 31 2.6.3 ix_()函数 34 2.6.4使用字符串建立索引 37 2.7线性代数 37 简单数组操作 37 2.8技巧和提示 38 2.8.1“自动”整形 39 2.8.2矢量堆叠 39 2.8.3直方图 40 2.9进一步阅读 41 3. NUMPY 基础知识 42 3.1 数据类型 42 3.1.1 数组类型之间的转换 42 3.1.2 数组标量 45 3.1.3 溢出错误 46 3.1.4 扩展精度 47 3.2 创建数组 47 3.2.1 简介 48 3.2.2 将Python array_like对象转换为Numpy数组 48 3.2.3 Numpy原生数组的创建 48 3.2.4 从磁盘读取数组 50 3.3 NUMPY与输入输出 51 3.3.1 定义输入 51 3.3.2 将行拆分为列 52 3.3.3 跳过直线并选择列 54 3.3.4 选择数据的类型 55 3.3.5 设置名称 56 3.3.6 调整转换 59 3.3.7 快捷方式函数 62 3.4 索引 62 3.4.1 赋值与引用 63 3.4.2 单个元素索引 63 3.4.3 其他索引选项 64 3.4.4 索引数组 65 3.4.5 索引多维数组 66 3.4.6 布尔或“掩码”索引数组 67 3.4.7 将索引数组与切片组合 69 3.4.8 结构索引工具 70 3.4.9 为索引数组赋值 71 3.4.10 在程序中处理可变数量的索引 72 3.5 广播 73 3.6 字节交换 78 3.6.1字节排序和ndarrays简介 78 3.6.2 更改字节顺序 80 3.7 结构化数组 82 3.7.1 介绍 82 3.7.2 结构化数据类型 83 3.7.3 索引和分配给结构化数组 88 3.7.4 记录数组 96 3.7.5 Recarray Helper 函数 98 3.8编写自定义数组容器 116 3.9子类化NDARRAY 124 3.9.1 介绍 124 3.9.2 视图投影 125 3.9.3 从模板创建 126 3.9.4 视图投影与从模板创建的关系 126 3.9.5 子类化的含义 126 3.9.6 简单示例 —— 向ndarray添加额外属性 132 3.9.7 稍微更现实的例子 —— 添加到现有数组的属性 134 3.9.8 __array_ufunc__ 对于ufuncs 135 3.9.9 __array_wrap__用于ufuncs和其他函数 139 3.9.10 额外的坑 —— 自定义的 __del__ 方法和 ndarray.base 142 3.9.11 子类和下游兼容性 143 4. 其他杂项 144 4.1 IEEE 754 浮点特殊值 144 4.2 NUMPY 如何处理数字异常的 146 4.3 示例 146 4.4 连接到 C 的方式 147 4.4.1 不借助任何工具, 手动打包你的C语言代码。 147 4.4.2 Cython 148 4.4.3 ctypes 148 4.4.4 SWIG(自动包装发生器) 149 4.4.5 scipy.weave 149 4.4.6 Psyco 149 5. 与MATLAB比较 149 5.1 介绍 150 5.2 一些关键的差异 150 5.3 'ARRAY'或'MATRIX'?我应该使用哪个? 151 5.3.1 简答 151 5.3.2 长答案 151 5.4 MATLAB 和 NUMPY粗略的功能对应表 153 5.4.1 一般功能的对应表 153 5.4.2 线性代数功能对应表 154 5.5 备注 161 5.6 自定义您的环境 163 5.7 链接 164 6. 从源代码构建 164 6.1 先决条件 164 6.2 基本安装 164 6.3 测试 165 并行构建 165 6.4 FORTRAN ABI不匹配 165 6.4.1 选择fortran编译器 166 6.4.2 如何检查BLAS / LAPACK /地图集ABI 166 6.5 加速BLAS / LAPACK库 166 6.5.1 BLAS 166 6.5.2 LAPACK 167 6.5.3 禁用ATLAS和其他加速库 167 6.6 提供额外的编译器标志 168 6.7 使用ATLAS支持构建 168 7. 使用NUMPY的C-API 168 7.1 如何扩展NUMPY 168 7.1.1 编写扩展模板 169 7.1.2 必需的子程序 169 7.1.3 定义函数 171 7.1.4 处理数组对象 175 7.1.5 示例 180 7.2 使用PYTHON作为胶水 182 7.2.1 从Python调用其他编译库 183 7.2.2 手工生成的包装器 183 7.2.3 f2py 184 7.2.4 用Cython 191 7.2.5 ctypes 196 7.2.6 您可能会觉得有用的其他工具 206 7.3 编写自己的UFUNC 208 7.3.1 创建一个新的ufunc 208 7.3.2 示例非ufunc扩展名 209 7.3.3 一种dtype的NumPy ufunc示例 215 7.3.4 示例具有多个dtypes的NumPy ufunc 221 7.3.5 示例具有多个参数/返回值的NumPy ufunc 230 7.3.6 示例带有结构化数组dtype参数的NumPy ufunc 235 7.4 深入的知识 241 7.4.1 迭代数组中的元素 242 7.4.2 用户定义的数据类型 246 7.4.3 在C中对ndarray进行子类型化 249