SAP BW数据仓库:概念、架构与多维建模解析
版权申诉
147 浏览量
更新于2024-06-27
收藏 93KB DOCX 举报
"SAP BW中文简介.docx"
SAP BW,全称为Business Information Warehouse,是SAP公司提供的一款数据仓库解决方案,旨在帮助企业管理和分析大量业务数据,以支持决策制定。本文档主要介绍了SAP BW的基本理论、系统架构以及多维建模技术。
1、数据仓库的基本理论
数据仓库是用于商业智能的关键组件,它不同于传统的在线事务处理(OLTP)系统,后者关注实时交易。数据仓库专注于数据的分析和报告,具备以下四个关键特性:
(1) 面向主题:数据仓库围绕特定业务领域或主题进行组织,如销售分析、财务报告等,以便于数据分析。
(2) 集成:数据仓库整合来自不同来源的数据,确保数据一致性,避免重复。
(3) 时间相关:数据仓库记录历史数据,支持时间序列分析和趋势预测。
(4) 相对稳定:数据一旦加载到仓库,通常不再更新或删除,以保持历史数据的完整性。
2、数据仓库系统的体系结构
SAP BW的数据仓库系统通常包含以下层次:
- 数据源:包含企业内外部的各种数据来源。
- 数据存储与管理:这是核心部分,负责数据的组织、存储、元数据管理以及系统维护。
- OLAP服务器:用于多维数据处理,支持用户从不同角度和层级探索数据。
- 前端工具与应用:包括查询工具、报表工具、数据分析工具和数据挖掘工具,以及基于数据仓库的应用程序。
3、数据仓库的多维建模技术
建模是数据仓库设计的关键步骤,SAP BW采用多维建模,主要遵循以下原则:
- 业务需求驱动:模型设计应紧密贴合实际业务需求。
- 面向主题:模型以业务主题为中心,每个主题包含相关联的数据元素。
- 明确定义维度和事实:维度提供分析的视角,事实则包含要分析的数值。
- 星型或雪花型模式:常见的建模结构,星型模式简化了查询性能,雪花型则优化了数据存储空间。
通过这些建模原则,SAP BW能够创建出高效且易于理解的数据模型,为企业提供深入洞察和智能决策支持。
总结来说,SAP BW是一个强大的数据仓库平台,通过整合企业数据、提供多维分析和灵活的前端工具,帮助企业实现数据驱动的决策。其数据仓库的基本理论、系统架构和建模技术共同构成了一个全面的分析环境,助力企业在信息海洋中挖掘价值。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2010-06-08 上传
2023-02-16 上传
2023-02-16 上传
2021-11-22 上传
2021-10-11 上传
2023-02-16 上传
猫一样的女子245
- 粉丝: 230
- 资源: 2万+
最新资源
- Raspberry Pi OpenCL驱动程序安装与QEMU仿真指南
- Apache RocketMQ Go客户端:全面支持与消息处理功能
- WStage平台:无线传感器网络阶段数据交互技术
- 基于Java SpringBoot和微信小程序的ssm智能仓储系统开发
- CorrectMe项目:自动更正与建议API的开发与应用
- IdeaBiz请求处理程序JAVA:自动化API调用与令牌管理
- 墨西哥面包店研讨会:介绍关键业绩指标(KPI)与评估标准
- 2014年Android音乐播放器源码学习分享
- CleverRecyclerView扩展库:滑动效果与特性增强
- 利用Python和SURF特征识别斑点猫图像
- Wurpr开源PHP MySQL包装器:安全易用且高效
- Scratch少儿编程:Kanon妹系闹钟音效素材包
- 食品分享社交应用的开发教程与功能介绍
- Cookies by lfj.io: 浏览数据智能管理与同步工具
- 掌握SSH框架与SpringMVC Hibernate集成教程
- C语言实现FFT算法及互相关性能优化指南