华为机器学习入门:决策树与随机森林在贷款风险分类中的应用
需积分: 32 37 浏览量
更新于2024-09-09
收藏 953KB PDF 举报
在机器学习领域,分类问题是一个关键概念,特别是在华为的7天入门课程中,它被作为主要的教学内容之一。分类是指在给定一组特征数据后,通过学习算法或规则,建立一个模型或分类器,用于预测未知数据的类别标签。在实际应用中,例如银行的贷款审核,通过分析申请者的各项指标来判断其贷款风险等级,这就是一个典型的分类问题。
分类问题属于监督学习,因为模型的训练依赖于带有类别标签的数据。数据标签不仅是构建模型的基础,还用于监督学习过程中发现数据的类别分布规律。标签通常是数值或字符串形式,表示不同类别的标识,它们自身并不具有顺序或大小的含义。
分类的过程分为两个阶段:训练阶段和预测阶段。训练阶段是利用算法(如决策树或随机森林)学习数据集中的模式,将输入特征映射到相应的类别标签。例如,决策树算法通过一系列规则划分数据,形成一棵树状结构,而随机森林则是多个决策树的集成,提高了预测准确性。预测阶段则是使用训练好的模型对新数据进行预测,不带标签的数据经过模型处理后得到类别预测结果。
评估分类性能通常通过划分训练集和验证集,例如交叉验证,以检验模型在未见过的数据上的泛化能力。常见的分类问题实例包括文本文档分类(如新闻分类)、垃圾邮件检测、图像分类(如物体识别)、手写字符识别以及人脸识别等。这些应用展示了分类技术在实际生活和工业场景中的广泛应用。
在华为的MachineArts平台中,开发者可以利用这些算法进行模型训练和部署,通过实践提高对平台的使用技巧。通过深入理解分类问题和相关算法,用户能够更有效地解决实际问题,并在大数据分析和人工智能项目中取得成功。
2019-08-12 上传
2017-12-28 上传
2024-08-29 上传
228 浏览量
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
why123wh
- 粉丝: 25
- 资源: 6
最新资源
- JavaScript实现的高效pomodoro时钟教程
- CMake 3.25.3版本发布:程序员必备构建工具
- 直流无刷电机控制技术项目源码集合
- Ak Kamal电子安全客户端加载器-CRX插件介绍
- 揭露流氓软件:月息背后的秘密
- 京东自动抢购茅台脚本指南:如何设置eid与fp参数
- 动态格式化Matlab轴刻度标签 - ticklabelformat实用教程
- DSTUHack2021后端接口与Go语言实现解析
- CMake 3.25.2版本Linux软件包发布
- Node.js网络数据抓取技术深入解析
- QRSorteios-crx扩展:优化税务文件扫描流程
- 掌握JavaScript中的算法技巧
- Rails+React打造MF员工租房解决方案
- Utsanjan:自学成才的UI/UX设计师与技术博客作者
- CMake 3.25.2版本发布,支持Windows x86_64架构
- AR_RENTAL平台:HTML技术在增强现实领域的应用