基于蜂群原理的自适应划分聚类算法:无K值限制与高效性能
需积分: 0 44 浏览量
更新于2024-09-09
收藏 475KB PDF 举报
本文档探讨了一种创新的聚类算法——基于蜂群原理的划分聚类算法。传统聚类方法通常依赖于预先设定的聚类簇数量K,这限制了其灵活性。作者针对这一问题,提出了一种新的思路,即借鉴蜜蜂的觅食行为,将聚类中心比喻为食物源,数据对象通过自我组织的过程寻找最优的聚类结构。
算法的核心是引入了两个关键概念:紧密度函数和分离度函数。紧密度函数用于评估每个聚类中心的内部连接程度,确保聚类内的数据对象相似度高,而分离度函数则负责全局地评估最佳聚类簇的数量,无需人工指定。这种自适应性使得算法能够在没有预先设定K的情况下进行有效的聚类。
通过仿真实验,研究者证明了这种算法在寻找最佳聚类数方面表现出色,不仅具有较高的准确率,而且算法的时间复杂度相对较低,仅为O(n×k^3),其中n表示数据对象的数量,k远小于n,这意味着算法在处理大规模数据时也具有很高的执行效率。这对于在实际应用中处理大量数据集的场景具有显著的优势。
作者团队包括刘雷、王洪国、邵增珍和尹会娟,他们在聚类分析、计算智能等多个领域有着丰富的研究背景,他们的合作展示了在理论研究与实际问题解决上的结合,推动了聚类算法领域的前沿进展。
这篇论文提供了一种新颖的聚类方法,它在处理复杂数据集时既灵活又高效,为划分聚类算法的研究和实践开辟了新的可能性。对于数据挖掘、人工智能等领域以及对聚类算法有深入研究的人来说,这是一种值得深入探讨和应用的先进技术。
2021-05-18 上传
194 浏览量
236 浏览量
245 浏览量
115 浏览量

weixin_39840588
- 粉丝: 451
最新资源
- 深入解析JavaWeb中Servlet、Jsp与JDBC技术
- 粒子滤波在视频目标跟踪中的应用与MATLAB实现
- ISTQB ISEB基础级认证考试BH0-010题库解析
- 深入探讨HTML技术在hundeakademie中的应用
- Delphi实现EXE/DLL文件PE头修改技术
- 光线追踪:探索反射与折射模型的奥秘
- 构建http接口以返回json格式,使用SpringMVC+MyBatis+Oracle
- 文件驱动程序示例:实现缓存区读写操作
- JavaScript顶盒技术开发与应用
- 掌握PLSQL: 从语法到数据库对象的全面解析
- MP4v2在iOS平台上的应用与编译指南
- 探索Chrome与Google Cardboard的WebGL基础VR实验
- Windows平台下的IOMeter性能测试工具使用指南
- 激光切割板材表面质量研究综述
- 西门子200编程电缆PPI驱动程序下载及使用指南
- Pablo的编程笔记与机器学习项目探索