Python下的统计学方法:机器学习基石

版权申诉
5星 · 超过95%的资源 9 下载量 108 浏览量 更新于2024-07-20 收藏 2.63MB PDF 举报
《统计方法与机器学习》是由Jason Brownlee编著的一本指南,该书旨在帮助读者理解并掌握如何利用Python将数据转化为知识在机器学习领域中的实际应用。作为一本教育性资源,它明确指出内容仅供学习使用,作者不对因本书信息的准确性或完整性导致的任何损失或责任负责。在使用时,读者需自行承担风险。 书中深入浅出地探讨了统计学在机器学习中的核心地位,强调了它是理解并构建机器学习模型的基础。读者将通过阅读本书了解到一系列关键的主题,包括: 1. **统计基础**:章节中会详细讲解统计学的基本概念,如概率论、分布、中心极限定理等,这些都是机器学习算法背后的数学支撑。 2. **机器学习中的统计方法**:涵盖回归分析(如线性回归、逻辑回归)、分类技术(如决策树、支持向量机)、以及聚类分析(如K-means)中所运用的统计原理。 3. **汇总统计**:介绍如何通过计算均值、中位数、标准差等指标来描述和理解数据集的特征。 4. **假设检验**:了解如何设计和执行假设检验,以验证数据是否符合特定假设,这对于特征选择和模型评估至关重要。 5. **非参数统计**:与参数方法相对,非参数统计方法不依赖于特定数据分布,适用于数据分布未知或复杂的场景。 6. **重新采样方法**:包括随机梯度下降、自助法(Bootstrap)和交叉验证等,这些技术用于处理数据不平衡问题、估计模型性能和调整模型参数。 7. **Python实践**:书中使用Python作为主要工具,介绍如何运用NumPy、Pandas和SciPy等库进行数据预处理、统计分析和建模。 8. **案例研究**:通过具体的实例演示,使理论知识更具可操作性和实用性,帮助读者掌握实际应用中的统计方法。 每一部分都配以清晰的解释和逐步教学,使得即使是初学者也能逐步提升对统计方法在机器学习中的理解和技能。这是一本不仅适合机器学习专业人士,也适合对数据分析感兴趣的学习者参考的实用教材。
2017-08-01 上传
Pratap Dangeti, "Statistics for Machine Learning" English | ISBN: 1788295757 | 2017 | EPUB | 311 pages | 12 MB Key Features Learn about the statistics behind powerful predictive models with p-value, ANOVA, F-statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of machine learning with the help of this example-rich guide in R & Python. Book Description Complex statistics in machine learning worries a lot of developers. Knowing statistics helps in building strong machine learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for machine learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. You will see real-world examples that discuss the statistical side of machine learning and make you comfortable with it. You will come across programs for performing tasks such as model, parameters fitting, regression, classification, density collection, working with vectors, matrices, and more.By the end of the book, you will understand concepts of required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problems. What you will learn Understanding Statistical & Machine learning fundamentals necessary to build models Understanding major differences & parallels between statistics way of solving problem & machine learning way of solving problem Know how to prepare data and "feed" the models by using the appropriate machine learning algorithms from the adequate R & Python packages Analyze the results and tune the model appropriately to his or her own predictive goals Understand concepts of required statistics for Machine Learning Draw parallels between statistics and machine learning Understand each component of machine learning models and see impact of changing them