Python入门:自然语言处理实战指南

需积分: 10 35 下载量 158 浏览量 更新于2024-07-20 2 收藏 11.48MB PDF 举报
"《自然语言处理入门:Python实践》是一本专为初学者打造的自然语言处理(Natural Language Processing, NLP)教材。该书由Steven Bird、Ewan Klein和Edward Loper合著,深入浅出地介绍了如何利用Python编程语言和Natural Language Toolkit (NLTK)开源库在NLP领域开展实践。书中内容涵盖了广泛的主题,旨在帮助读者掌握关键技能,包括: 1. 文本信息提取:通过Python程序,学习如何从大量无结构文本中提取有用信息,如确定主题或识别命名实体,这对于Web应用程序开发和多语言新闻分析至关重要。 2. 语言结构分析:理解文本中的语法和语义结构,涉及解析和深度理解句子的组成,这是构建智能对话系统和机器翻译的基础。 3. 数据库访问:介绍如何接入流行的语言学数据库,如WordNet,以及利用树形银行(treebanks)进行词汇和句法研究。 4. 跨学科融合:书中还将引导读者将来自语言学、人工智能等多个领域的技术整合到NLP项目中,提高解决方案的多样性和实用性。 5. 教学与应用:无论是个人自学还是课堂教学和工作坊,本书都提供丰富的实例和练习,帮助读者在实践中提升技能,对探索人类语言的工作原理非常有帮助。 版权信息表明,本书版权属于Steven Bird、Ewan Klein和Edward Loper,出版于2009年,并且适用于教育、商业或销售推广用途。此外,还提供了电子版选项,可通过O'Reilly Media在线平台获取。编辑、生产编辑、校对员和封面/内部设计师等团队成员也列出了具体职责。 《自然语言处理与Python》是一本实用而全面的指南,适合那些希望在NLP领域利用Python技术进行创新和解决问题的读者。无论你是软件开发者、语言学家还是对自然语言处理感兴趣的爱好者,这本书都能为你打开一扇通向这一复杂领域的窗口。"
2017-08-11 上传
Python Natural Language Processing by Jalaj Thanaki English | 31 July 2017 | ISBN: 1787121429 | ASIN: B072B8YWCJ | 486 Pages | AZW3 | 11.02 MB Key Features Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Book Description This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. What you will learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot,