人机协同下的Sawyer混合增强智能提升非结构化环境抓取性能

4 下载量 59 浏览量 更新于2024-08-28 1 收藏 5.31MB PDF 举报
本文主要探讨了"人在回路的混合增强智能在Sawyer的研究与验证"这一主题,着重于解决机器学习在处理动态、非完整和非结构化信息时的局限性。机器学习虽然近年来取得了显著的进步,广泛应用在各种场景中,但它在理解和适应复杂、不断变化的环境中往往不如人类灵活。为了弥补这一差距,研究人员提出了一种创新方法,即将人的决策与机器学习、知识库相结合,形成一个混合增强智能的闭环系统。 该研究团队以Sawyer协作机器人作为实验平台,Sawyer是Rethink Robotics公司的一款灵活、人形的工业级机器人,以其高精度和适应性而受到欢迎。他们设计了一套实验,通过人机协同的方式,让Sawyer在非结构化环境中执行抓取任务。实验结果显示,相较于传统的单一机器学习方法,当引入人类智能参与决策过程时,Sawyer在任务执行上的性能得到了显著提升。这种人机融合的方式可以利用人的直觉和判断力,增强机器在处理不确定性情境中的表现能力。 人机融合在这个案例中不仅提升了机器的智能化水平,还体现了人工智能与人类智慧的互补性。它强调了在复杂问题解决过程中,将人类的决策能力和机器的高效计算能力相结合的重要性。此外,文章还提到了关键词“人机融合”、“Sawyer”和“协作机器人”,表明了研究的焦点集中在这些技术领域的交叉应用上。 本文的研究成果对于推动人工智能的发展具有重要意义,特别是在智能制造、服务机器人等领域,人机协同的工作方式有望提高工作效率,降低出错率,并为未来的智能系统设计提供新的思考角度。同时,它也为解决现实世界中的问题提供了创新解决方案,尤其是在那些依赖于灵活性和情境理解的任务中。这篇论文深入探讨了如何通过混合增强智能来优化机器人的智能表现,以更好地适应现实生活中的挑战。
2021-09-22 上传
Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively. Summary Most machine learning systems that are deployed in the world today learn from human feedback. However, most machine learning courses focus almost exclusively on the algorithms, not the human-computer interaction part of the systems. This can leave a big knowledge gap for data scientists working in real-world machine learning, where data scientists spend more time on data management than on building algorithms. Human-in-the-Loop Machine Learning is a practical guide to optimizing the entire machine learning process, including techniques for annotation, active learning, transfer learning, and using machine learning to optimize every step of the process. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. About the book Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to create training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows. What's inside Identifying the right training and evaluation data Finding and managing people to annotate data Selecting annotation quality control strategies Designing interfaces to improve accuracy and efficiency About the author Robert (Munro) Monarch is a data scientist and engineer who has built machine learning data for companies such as