Functional overview STM32L051x6 STM32L051x8
20/131 DocID025938 Rev 8
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L051x6/8 embed a nested vectored interrupt controller able to
handle up to 32 maskable interrupt channels and 4 priority levels.
The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:
• includes a Non-Maskable Interrupt (NMI)
• provides zero jitter interrupt option
• provides four interrupt priority levels
The tight integration of the processor core and NVIC provides fast execution of Interrupt
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved
through the hardware stacking of registers, and the ability to abandon and restart load-
multiple and store-multiple operations. Interrupt handlers do not require any assembler
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also
significantly reduces the overhead when switching from one ISR to another.
To optimize low-power designs, the NVIC integrates with the sleep modes, that include a
deep sleep function that enables the entire device to enter rapidly stop or standby mode.
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.4 Reset and supply management
3.4.1 Power supply schemes
• V
DD
= 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through V
DD
pins.
• V
SSA
, V
DDA
= 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs
and PLL. V
DDA
and V
SSA
must be connected to V
DD
and V
SS
, respectively.
3.4.2 Power supply supervisor
The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
Two versions are available:
• The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
• The other version without BOR operates between 1.65 V and 3.6 V.
After the V
DD
threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
not at power-on), the option byte loading process starts, either to confirm or modify default
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the
power ramp-up should guarantee that 1.65 V is reached on V
DD
at least 1 ms after it exits
the POR area.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the