三维人脸建模技术解析与实践应用

版权申诉
ZIP格式 | 4.01MB | 更新于2024-11-06 | 102 浏览量 | 0 下载量 举报
收藏
具体来说,该资源的核心内容是使用3ds文件格式来载入并创建出精确的3D人脸模型。" 知识点详细说明如下: 1. 三维人脸建模(3D Face Modeling) 三维人脸建模是指利用计算机图形学和图像处理技术,通过数字化方法对人脸进行三维形态的重建和模拟。在该领域,研究者和开发者通常关注如何更准确地捕捉和复现人脸的几何特征、纹理以及表情变化等信息。三维人脸建模在安全验证、游戏开发、电影特效、虚拟现实等多个领域都有广泛的应用。 2. 3D载入(3D Loading) 3D载入是指将3D模型文件读入到计算机内存中,并为后续的渲染和处理做好准备的过程。这通常涉及到模型文件的解析、格式转换、内存分配等技术问题。在这个过程中,使用何种文件格式对于载入速度和模型的兼容性都是重要的考虑因素。常见的3D文件格式包括.obj, .stl, .fbx, .3ds等。 3. 3D建模(3D Modeling) 3D建模是指创建三维物体模型的过程,它包括为三维空间中的物体定义形状、大小、纹理和材质属性等工作。在3D建模中,开发者可以使用多种建模技术,如多边形建模(Polygon Modeling)、曲面建模(NURBS Modeling)以及基于体素的建模(Voxel Modeling)等。3D建模是三维动画和游戏设计的基础,也是虚拟现实和增强现实等领域的重要组成部分。 4. OpenGL(OpenGL) OpenGL(Open Graphics Library)是一个跨语言、跨平台的应用程序编程接口(API),用于渲染二维和三维矢量图形。该库由近350个不同的函数调用组成,用于绘制复杂的三维场景,从简单的图形到复杂的三维模型。OpenGL被广泛用于三维建模、游戏开发、虚拟现实等多个领域。 5. 3D人脸模型(3D Face Model) 3D人脸模型是指通过三维建模技术创建出的人脸的三维数字模型。这类模型通常包含详细的几何信息、表面纹理和材质属性,能够展示人脸的形状、皮肤的光泽以及其他视觉特征。3D人脸模型广泛应用于人脸识别系统、表情动画、医学仿真等领域。 6. 人脸建模文件(Facial Modeling File) 人脸建模文件是指为了存储和交换3D人脸模型数据而特别设计的文件格式。这些文件通常包含模型的几何数据、纹理贴图、骨骼绑定、动画信息等。常见的3D人脸模型文件格式包括但不限于.fbx、.ma、.blend、.3ds等。这些文件对于3D建模软件来说至关重要,它们使得模型可以在不同的软件之间传递而不会丢失信息,同时也为后期的渲染和动画制作提供了基础数据。 综上所述,"3D-face-reconstruction.zip_3D 载入_3D建模_opengl 3d face_人脸建模_人脸建模文件"压缩包中的内容对于那些对3D人脸建模感兴趣的开发者来说是一个宝贵的资源。无论是出于研究还是商业开发的目的,这个资源都能够提供必要的技术手段和文件格式支持,帮助用户实现更为精确和逼真的3D人脸模型的创建和处理。通过熟练掌握这些知识和技术,用户能够在三维图形设计、游戏开发、虚拟现实等IT领域中开辟新的可能性。
身份认证 购VIP最低享 7 折!
30元优惠券

相关推荐

filetype

帮我给每一行代码添加注释 class DeepKalmanFilter(nn.Module): def __init__(self, config): super(DeepKalmanFilter, self).__init__() self.emitter = Emitter(config.z_dim, config.emit_hidden_dim, config.obs_dim) self.transition = Transition(config.z_dim, config.trans_hidden_dim) self.posterior = Posterior( config.z_dim, config.post_hidden_dim, config.obs_dim ) self.z_q_0 = nn.Parameter(torch.zeros(config.z_dim)) self.emit_log_sigma = nn.Parameter(config.emit_log_sigma * torch.ones(config.obs_dim)) self.config = config @staticmethod def reparametrization(mu, sig): return mu + torch.randn_like(sig) * sig @staticmethod def kl_div(mu0, sig0, mu1, sig1): return -0.5 * torch.sum(1 - 2 * sig1.log() + 2 * sig0.log() - (mu1 - mu0).pow(2) / sig1.pow(2) - (sig0 / sig1).pow(2)) def loss(self, obs): time_step = obs.size(1) batch_size = obs.size(0) overshoot_len = self.config.overshooting kl = torch.Tensor([0]).to(self.config.device) reconstruction = torch.Tensor([0]).to(self.config.device) emit_sig = self.emit_log_sigma.exp() for s in range(self.config.sampling_num): z_q_t = self.z_q_0.expand((batch_size, self.config.z_dim)) for t in range(time_step): trans_loc, trans_sig = self.transition(z_q_t) post_loc, post_sig = self.posterior(trans_loc, trans_sig, obs[:, t]) z_q_t = self.reparametrization(post_loc, post_sig) emit_loc = self.emitter(z_q_t) reconstruction += ((emit_loc - obs[:, t]).pow(2).sum(dim=0) / 2 / emit_sig + self.emit_log_sigma * batch_size / 2).sum() if t > 0: over_loc, over_sig = self.transition(overshooting[:overshoot_len - 1]) over_loc = torch.cat([trans_loc.unsqueeze(0), over_loc], dim=0) over_sig = torch.cat([trans_sig.unsqueeze(0), over_sig], dim=0) else: over_loc = trans_loc.unsqueeze(0) over_sig = trans_sig.unsqueeze(0) overshooting = self.reparametrization(over_loc, over_sig) kl = kl + self.kl_div(post_loc.expand_as(over_loc), post_sig.expand_as(over_sig), over_loc, over_sig) / min(t + 1, self.config.overshooting) reconstruction = reconstruction / self.config.sampling_num kl = kl / self.config.sampling_num return reconstruction, kl

245 浏览量
filetype

详细解释一下这段代码,每一句都要进行注解:tgt = f'/kaggle/working/{dataset}-{scene}' # Generate a simple reconstruction with SIFT (https://en.wikipedia.org/wiki/Scale-invariant_feature_transform). if not os.path.isdir(tgt): os.makedirs(f'{tgt}/bundle') os.system(f'cp -r {src}/images {tgt}/images') database_path = f'{tgt}/database.db' sift_opt = pycolmap.SiftExtractionOptions() sift_opt.max_image_size = 1500 # Extract features at low resolution could significantly reduce the overall accuracy sift_opt.max_num_features = 8192 # Generally more features is better, even if behond a certain number it doesn't help incresing accuracy sift_opt.upright = True # rotation invariance device = 'cpu' t = time() pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True) print(len(os.listdir(f'{tgt}/images'))) print('TIMINGS --- Feature extraction', time() - t) t = time() matching_opt = pycolmap.SiftMatchingOptions() matching_opt.max_ratio = 0.85 # Ratio threshold significantly influence the performance of the feature extraction method. It varies depending on the local feature but also on the image type # matching_opt.max_distance = 0.7 matching_opt.cross_check = True matching_opt.max_error = 1.0 # The ransac error threshold could help to exclude less accurate tie points pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True) print('TIMINGS --- Feature matching', time() - t) t = time() mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3 # Sometimes you want to impose the first image pair for initialize the incremental reconstruction mapper_options.init_image_id1 = -1 mapper_options.init_image_id2 = -1 # Choose which interior will be refined during BA mapper_options.ba_refine_focal_length = True mapper_options.ba_refine_principal_point = True mapper_options.ba_refine_extra_params = True maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options) print('TIMINGS --- Mapping', time() - t)

210 浏览量
filetype

import open3d as o3d import numpy as np import laspy las = laspy.read("F:/rongdong/R8+/guanyinggong.laz") import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" # 提取坐标和颜色(假设有 RGB 信息) points = np.vstack((las.x, las.y, las.z)).transpose() colors = np.vstack((las.red, las.green, las.blue)).transpose() # 归一化颜色(LAS 通常存储为 16 位,需缩放到 0-1) colors = colors / 65535.0 def voxel_downsample(point_cloud, voxel_size=0.05): downsampled_point_cloud = point_cloud.voxel_down_sample(voxel_size) return downsampled_point_cloud # 创建 Open3D 点云对象 #pointS = points[0:100000] #colorS = colors[0:100000] pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) pcd.colors = o3d.utility.Vector3dVector(colors) down_pcd = voxel_downsample(pcd, voxel_size=0.05) # 可视化 o3d.visualization.draw_geometries([down_pcd]) #pcd = o3d.io.read_point_cloud("F:/rongdong/R8+/guanyinggong.laz") # 替换为实际路径 pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.05, max_nn=30)) o3d.visualization.draw_geometries([down_pcd], point_show_normal=True) mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9) print('Vertices: ', np.asarray(mesh.vertices).shape) print('Triangles: ', np.asarray(mesh.triangles).shape) vertices_to_remove = densities < np.quantile(densities, 0.35) mesh.remove_vertices_by_mask(vertices_to_remove) # 可视化最终结果 o3d.visualization.draw_geometries([mesh])改进这段代码,使其不会出现内存溢出的情况

5 浏览量
filetype
157 浏览量