自然语言处理入门指南:从基础到实践

1星 需积分: 19 52 下载量 186 浏览量 更新于2024-07-18 收藏 2.09MB PDF 举报
"自然语言处理入门" 自然语言处理(Natural Language Processing,NLP)是一门交叉学科,涉及计算机科学、语言学、数学和认知科学等领域。它的主要目标是使计算机能够理解、解释和生成人类语言,以便实现人机交互、自动文本处理、信息检索、机器翻译、情感分析等应用。 **什么是自然语言处理?** 自然语言处理是指计算机系统对人类语言的处理、理解和生成。它涉及到语言的语音、语法、语义和 pragmatics 等方面,旨在实现计算机对语言的自动处理和理解。 **自然语言处理的目的** 自然语言处理的主要目的包括: 1. **文本处理**:对文本进行 Tokenization、Stemming、Lemmatization、Normalization 等处理,以提取有用的信息。 2. **语言理解**:使计算机能够理解人类语言的含义和语义,以实现语言翻译、文本分类、情感分析等应用。 3. **语言生成**:使计算机能够生成人类语言,以实现自动文本生成、对话系统等应用。 **自然语言处理的应用** 自然语言处理的应用非常广泛,包括: 1. **文本分类**:对文本进行分类,以实现自动化的文本处理和信息检索。 2. **情感分析**:对文本的情感倾向进行分析,以了解用户的情感和偏好。 3. **机器翻译**:将一种语言翻译成另一种语言,以实现跨语言交流。 4. **语音识别**:将语音转换成文本,以实现语音交互系统。 5. **对话系统**:使计算机能够与人类进行自然语言对话,以实现自动客服、智能助手等应用。 **自然语言处理的技术** 自然语言处理的技术包括: 1. **Tokenization**:将文本分割成单词或词组,以便进行进一步的处理。 2. **Stemming**:将单词还原到其基本形式,以便进行词义分析。 3. **Lemmatization**:将单词还原到其基本形式,以便进行词义分析。 4. **Normalization**:对文本进行标准化,以便进行比较和分析。 5. **Word Representation**:将单词转换成向量形式,以便进行机器学习和深度学习。 **自然语言处理的挑战** 自然语言处理面临的挑战包括: 1. **语言多样性**:人类语言具有多样性和复杂性,难以进行统一的处理。 2. **语言理解**:计算机很难真正理解人类语言的含义和语义。 3. **数据质量**:自然语言处理需要大量的高质量数据,以便进行有效的训练和测试。 自然语言处理是一门重要的交叉学科,具有广泛的应用前景和挑战。
2017-08-11 上传
Python Natural Language Processing by Jalaj Thanaki English | 31 July 2017 | ISBN: 1787121429 | ASIN: B072B8YWCJ | 486 Pages | AZW3 | 11.02 MB Key Features Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Book Description This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. What you will learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot,